First of 3/7 of a week is 3 days because there are 7 days in a week e out of seven so you get it?
1. The question is asking you how much barrels of raisins is used in three days but first you need to find out how much they use in 1 day (this is how I would do it) so turn all the fractions into a decimal
4/9 = 0.4444...
6/5= 1.20
3/7= 0.43
So now you got your decimals
2. Multiply 0.4444 by 1.20 now you got how much you get a day for cosmos bakery which is 0.53
3. Now go back to the 3/7 of a week which is 3 days and now you need to multiply 0.53 by 3 and you will get your answer
ANSWER!
1.59 a day for cosmos bakery
I HOPE THIS HELPED YOU TO SOLVE THIS PROBLEM AND SOME FUTURE ONES!
Answer:

Step-by-step explanation:
Given that,
The radius of a cylinder, r = 5 cm
Height of the cylinder, h = 5 cm
We need to find the lateral surface area of the cylinder. The formula for the lateral surface area of the cylinder is given by :

Put all the values,

So, the lateral surface area of the cylinder is
.
Answer:
y = -5/6x + 19/2
Step-by-step explanation:
Answer:
(-3, -3)
Step-by-step explanation:
1.) Rewrite the second equation so 3y is on one side of the equation:
3y=6+5x
2.) Substitute the given value of 3y (replacing 3y with 6+5x, since we know they equal each other) into the equation 17x=-60-3y
Should end up with this:
17x=-60-(6+5x)
3.) Solve 17x=-60-(6+5x)
Calculate Difference: 17x=-66-5x
Combine Like Terms: 22x = -66
Divided both sides by 22 to isolate and solve for x: -3
So We know x=-3, now we got to find the y value. We can use either the first or second equation to find y value, so lets use the second.
3y=6+5x
1.) We know that x=-3, so we can simply substitute x in the equation
3y=6+5x with -3
3y=6+5(-3)
2.) Solve 3y=6+5(-3)
Combine Like Term: 3y=6+-15
Combine Like Term Even More: 3y= -9
Divide by 3 on both sides to isolate and solve for y: y=-3
So now we know y=-3 and once again we know x=-3, so if we format that
(-3,-3)
^ ^
x y
y = x³ + 3x² - x - 3
0 = x³ + 3x² - x - 3
0 = x²(x) + x²(3) - 1(x) - 1(3)
0 = x²(x + 3) - 1(x + 3)
0 = (x² - 1)(x + 3)
0 = (x² + x - x - 1)(x + 3)
0 = (x(x) + x(1) - 1(x) - 1(1))(x + 3)
0 = (x(x + 1) - 1(x + 1))(x + 3)
0 = (x - 1)(x + 1)(x + 3)
0 = x - 1 or 0 = x + 1 or 0 = x + 3
+ 1 + 1 - 1 - 1 - 3 - 3
1 = x or -1 = x or -3 = x
Solution Set: {-3, -1, 1}