Answer:
-1 Not in domain
0 In domain
1 In domain
Step-by-step explanation:
The domain for the square root function is all positive numbers including (0). The domain is the set of real numbers which when substituted into the function will produce a real result. While one can substitute a negative number into the square root function and get a result, however, the result will be imaginary. Therefore, the domain for the square root function is all positive numbers. It can simply be expressed with the following inequality:

Therefore, one can state the following about the given numbers. Evaluate if the number is greater than or equal to zero, if it is, then it is a part of the domain;
-1 => less than zero; Not in domain
0 => equal to zero; <em> </em>In domain
1 => greater than zero: In domain
Answer:
x = 1
Step-by-step explanation:
We need to solve for x by isolating the variable.
First, expand the parentheses:
2(x + 1) = 4
2 * x + 2 * 1 = 4
2x + 2 = 4
Then subtract by 2:
2x + 2 - 2 = 4 - 2
2x = 2
Finally, divide by 2:
2x/2 = 2/2
x = 1
Thus, x = 1.
Hope this helps!
Answer:

Step-by-step explanation:
The question to be solved is the following :
Suppose that a and b are any n-vectors. Show that we can always find a scalar γ so that (a − γb) ⊥ b, and that γ is unique if
. Recall that given two vectors a,b a⊥ b if and only if
where
is the dot product defined in
. Suposse that
. We want to find γ such that
. Given that the dot product can be distributed and that it is linear, the following equation is obtained

Recall that
are both real numbers, so by solving the value of γ, we get that

By construction, this γ is unique if
, since if there was a
such that
, then

Answer:
m-9
Step-by-step explanation:
12-9= 3
14-9= 5
18-9= 9
27-9= 18