Answer:
C
Step-by-step explanation:
4.32/5=0.86 per bar
6.48/8=0.81 per bar <---- better buy
The minimum value for 2x is 0
<span>the maximum value is achieved when A, D and C are collinear and the quadrilateral ABCD becomes an isosceles triangle ABC </span>
<span>base AB = 52 and vertical angle 2x + 34° </span>
<span>For the sine law </span>
<span>(sin 2x)/22 = (sin ADB)/AB </span>
<span>(sin 34°)/30 = (sin BDC)/BC </span>
<span>is given that AB = BC, and sin ADC = sin BDC because they are supplementary, so from </span>
<span>(sin ADC)/AB = (sin BDC)/BC </span>
<span>it follows </span>
<span>(sin 2x)/22 = (sin 34°)/30 </span>
<span>sin 2x = 22 (sin 34°)/30 </span>
<span>2x = asin(22 (sin 34°)/30) ≈ 24.2° </span>
<span>x = 0.5 asin(22 (sin 34°)/30) ≈ 12.1° </span>
<span>0 < x < 12.1°</span>
Answer:
Its value is 1/7.
I hope this will help you.
X=14
3 times 14 is 42-13 is 29
(-1.2,-2.0) and (1.9,2.2) are the best approximations of the solutions to this system.
Option B
<u>Step-by-step explanation:</u>
Here, we have a graph of two functions from which we need to find the approximate value of common solutions. Let's find this:
First look at where we have intersection points, In first quadrant & in third quadrant.
<u>At first quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point . After doing this we can clearly see that the perpendicular lines cut x-axis at x=1.9 and y-axis at y=2.2. So, one point is (1.9,2.2)
<u>At Third quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point. After doing this we can clearly see that the perpendicular lines cut x-axis at x=-1.2 and y-axis at y= -2.0. So, other point is (-1.2,-2.0).