Answer:
When the required direction of transport is opposed to concentration levels, a cell <u>will </u> expend energy to force<u> ions</u> across its membrane.
Explanation:
If the concentration gradient is opposite to the direction of transport of minerals, then the cell will use energy to transport mineral ions from a lower concentration to a higher concentration. The most common process through which this happens is termed as the active transport.
The process of active transport is opposite to passive transport. In passive transport, molecules move from a higher concentration to a lower concentration.
Living organisms obtain many of their requirements by diffusion. They also get rid of many of waste materials in this way. For example, Plants need carbon dioxide for photosynthesis. This diffuses from the air into the leaves through the stomata. It does this because there is a lower concentration of carbon dioxide inside the leaf as the cells are using it up. Outside the leaf in the air, there is a higher concentration. Carbon dioxide molecules therefore diffuse into the leaf down this concentration gradient :)
I hope u understood!
Sexual reproduction in flowering plants involves the production of male and female gametes, the transfer of the male gametes to the female ovules in a process called pollination. After pollination occurs, fertilization happens and the ovules grow into seeds within a fruit.
Artic air is the answer to this
Answer:X-ray crystallography and NMR spectroscopy
Explanation: