Esta é a trigonometria . Se você desenhar uma linha a partir do topo da casa de luz para o barco, você terá a hypotonuse de um triângulo. Um truque é lembrar que este é um triângulo especial. É um triângulo 30-60-90 , que tem propriedades especiais mostradas na fixação abaixo . por isso sabemos que o lado adjacente que não é o hyposonuse é x√3 . Agora sabemos que x<span>√3 = 20
Solve for x.
x</span><span>√3=20
divide both sides by </span><span>√3.
x=20/(</span><span><span>√3)
</span>Try not to have square roots (</span><span><span>√)</span> in denomenator so multiply top and bottom by </span><span>√3 and get
x=(20</span><span>√3)/3
x is what we are looking for so the answer is </span>
20<span>√3 m </span><span>ou cerca de 34.64 m</span>
Answer:
the original area is 64ft squared or 169ft squared more perdurable 64
Step-by-step explanation:
(x-2)(x+7)=90
x^2 +5x -14=90
x^2 +5x -14 -90=90-90
x^2 +5x -104=0
factor it out
(x−8)(x+13)=0
so 8 or -13
What is the median of the data set? <br>
{10, 15, 14, 14, 10, 10, 8, 18, 11, 12, 17, 16}
Alexus [3.1K]
The median of a data set is the 'middle number'. You can find the median by listing the given numbers from least to greatest (left to right) and finding the middle number.
8, 10, 10, 10, 11, 12, 14, 14, 15, 16, 17, 18
Cross one out on each side before getting to your last number that should be in the middle.
The middle numbers are: 12 and 14. If it was only one number, we could already have the answer, but since it is two numbers in the middle, we need to add them up and divide by 2.
12 + 14 = 26
26 ÷ 2 = 13
So, the median of the data set is: 13.
Step-by-step explanation: The <em>intersection</em> of two figures can
be defined as the set of points that is contained in both figures.
In this figure, lines <em>h</em> and <em>i</em> intersect at C or we can
say that C is the intersection of lines <em>h </em>and <em>i</em>.
In this figure, C is the intersection of lines <em>h</em> and <em>i</em>
because C is the point contained by both <em>h</em> and <em>i</em>.
If the scale factor is 1, the image G' is the same as the original pont G. It is
(1, -3)