What the hel you expect us to do all that for 5 kids points? Go ask you mom to do that for you. If you're asking US to do that, then it has to be 40 or 50 points.
No it isn’t correct, it’s the second one! Good luck!
Answer:
The factors of 32 are 32, 16, 8, 4, 2, 1. The factors of 72 are 72, 36, 24, 18, 12, 9, 8, 6, 4, 3, 2, 1. The common factors of 32 and 72 are 8, 4, 2, 1, intersecting the two sets above.
plz mark brainliest :DD
Answer:
Step-by-step explanation:
(a)
Consider the following:

Use sine rule,
![\frac{b}{a}=\frac{\sinB}{\sin A} \\\\=\frac{\sin{\frac{\pi}{3}} }{\sin{\frac{\pi}{4}}}\\\\=\frac{[\frac{\sqrt{3}}{2}]}{\frac{1}{\sqrt{2}}}\\\\=\frac{\sqrt{2}}{2}\times \frac{\sqrt{2}}{1}=\sqrt{\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba%7D%3D%5Cfrac%7B%5CsinB%7D%7B%5Csin%20A%7D%0A%5C%5C%5C%5C%3D%5Cfrac%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B3%7D%7D%0A%7D%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5D%7D%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Ctimes%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B1%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D)
Again consider,
![\frac{b}{a}=\frac{\sin{B}}{\sin{A}} \\\\\sin{B}=\frac{b}{a}\times \sin{A}\\\\\sin{B}=\sqrt{\frac{3}{2}}\sin {A}\\\\B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba%7D%3D%5Cfrac%7B%5Csin%7BB%7D%7D%7B%5Csin%7BA%7D%7D%0A%5C%5C%5C%5C%5Csin%7BB%7D%3D%5Cfrac%7Bb%7D%7Ba%7D%5Ctimes%20%5Csin%7BA%7D%5C%5C%5C%5C%5Csin%7BB%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%20%7BA%7D%5C%5C%5C%5CB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
Thus, the angle B is function of A is, ![B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=B%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
Now find 
Differentiate implicitly the function
with respect to A to get,

b)
When
, the value of
is,

c)
In general, the linear approximation at x= a is,

Here the function ![f(A)=B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=f%28A%29%3DB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
At 
![f(\frac{\pi}{4})=B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{\frac{\pi}{4}}]\\\\=\sin^{-1}[\sqrt{\frac{3}{2}}.\frac{1}{\sqrt{2}}]\\\\\=\sin^{-1}(\frac{\sqrt{2}}{2})\\\\=\frac{\pi}{3}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%3DB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5D%5C%5C%5C%5C%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5D%5C%5C%5C%5C%5C%3D%5Csin%5E%7B-1%7D%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%5C%5C%5C%5C%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
And,
from part b
Therefore, the linear approximation at
is,
![f(x)=f'(A).(x-A)+f(A)\\\\=f'(\frac{\pi}{4}).(x-\frac{\pi}{4})+f(\frac{\pi}{4})\\\\=\sqrt{3}.[x-\frac{\pi}{4}]+\frac{\pi}{3}](https://tex.z-dn.net/?f=f%28x%29%3Df%27%28A%29.%28x-A%29%2Bf%28A%29%5C%5C%5C%5C%3Df%27%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29.%28x-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%2Bf%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5C%5C%5C%5C%3D%5Csqrt%7B3%7D.%5Bx-%5Cfrac%7B%5Cpi%7D%7B4%7D%5D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D)
d)
Use part (c), when
, B is approximately,
![B=f(46°)=\sqrt{3}[46°-\frac{\pi}{4}]+\frac{\pi}{3}\\\\=\sqrt{3}(1°)+\frac{\pi}{3}\\\\=61.732°](https://tex.z-dn.net/?f=B%3Df%2846%C2%B0%29%3D%5Csqrt%7B3%7D%5B46%C2%B0-%5Cfrac%7B%5Cpi%7D%7B4%7D%5D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5C%5C%5C%5C%3D%5Csqrt%7B3%7D%281%C2%B0%29%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5C%5C%5C%5C%3D61.732%C2%B0)