Answer:
17 <em>x</em><em> </em>+ 7 y = 20
y =<em>20x</em><em> </em><em>-</em><em> </em><em>4</em><em>2</em>
<em>1</em><em>7</em><em> </em><em>x</em><em> </em><em>+</em><em> </em><em>7</em><em>(</em><em>20x</em><em> </em><em>-</em><em> </em><em>4</em><em>2</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em><em>0</em>
<em>17x</em><em> </em><em>+</em><em> </em><em>140x</em><em> </em><em>-</em><em> </em><em>2</em><em>9</em><em>4</em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em>0</em>
<em>1</em><em>5</em><em>7</em><em> </em><em>x</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em>0</em><em> </em><em>+</em><em> </em><em>2</em><em>9</em><em>4</em>
<em>157x</em><em> </em><em>÷</em><em> </em><em>1</em><em>5</em><em>7</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>3</em><em>1</em><em>4</em><em> </em><em>÷</em><em> </em><em>1</em><em>5</em><em>7</em>
<em>x</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em>
<em>y</em><em> </em><em>=</em><em> </em><em>20x</em><em> </em><em>-</em><em> </em><em>4</em><em>2</em><em> </em>
<em>y</em><em> </em><em>=</em><em> </em><em>2</em><em>0</em><em> </em><em>(</em><em>2</em><em>)</em><em> </em><em>-</em><em> </em><em>4</em><em>2</em>
<em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>0</em><em> </em><em>-</em><em> </em><em>4</em><em>2</em>
<em>y</em><em> </em><em>=</em><em> </em><em>-2</em>
<em>there</em><em> </em><em>for</em><em> </em><em>x</em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>and</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>-2</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>solution</em><em> </em>
We plug in 14 for x when we set the two equations equal to each other to prove they are equal.
So true LM congruent to MN
9514 1404 393
Answer:
f'(x) = (-6x² -14x -23)/(x² +5x +2)²
f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³
Step-by-step explanation:
The applicable derivative formula is ...
d(u/v) = (v·du -u·dv)/v²
__
f'(x) = ((-x² -5x -2)(4x +4) -(2x² +4x -3)(-2x -5))/(-x² -5x -2)²
f'(x) = (-4x³ -24x²-28x -8 +4x³ +18x² +14x -15)/(x² +5x +2)²
f'(x) = (-6x² -14x -23)/(x² +5x +2)²
__
Similarly, the second derivative is the derivative of f'(x).
f''(x) = ((x² +5x +2)²(-12x -14) -(-6x² -14x -23)(2(x² +5x +2)(2x +5)))/(x² +5x +2)⁴
f''(x) = ((x² +5x +2)(-12x -14) +2(6x² +14x +23)(2x +5))/(x² +5x +2)³
f''(x) = (12x³ +42x² +138x +202)/(x² +5x +2)³