Answer:
x-intercept → (-4, 0)
y-intercept → (0, -2.44)
Domain: (-∞, ∞)
Range: (-∞, ∞)
Step-by-step explanation:
Given function is f(x) = ![-\sqrt[3]{(x+3)}-1](https://tex.z-dn.net/?f=-%5Csqrt%5B3%5D%7B%28x%2B3%29%7D-1)
For x-intercept,
![-\sqrt[3]{(x+3)}-1=0](https://tex.z-dn.net/?f=-%5Csqrt%5B3%5D%7B%28x%2B3%29%7D-1%3D0)
![-\sqrt[3]{(x+3)}=1](https://tex.z-dn.net/?f=-%5Csqrt%5B3%5D%7B%28x%2B3%29%7D%3D1)
![\sqrt[3]{(x+3)}=-1](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28x%2B3%29%7D%3D-1)
(x + 3) = -1
x = -4
Therefore, x-intercept → (-4, 0)
For y-intercept,
Substitute x = 0 in the function.
f(x) = ![-\sqrt[3]{(0+3)}-1](https://tex.z-dn.net/?f=-%5Csqrt%5B3%5D%7B%280%2B3%29%7D-1)
= ![-\sqrt[3]{3}-1](https://tex.z-dn.net/?f=-%5Csqrt%5B3%5D%7B3%7D-1)
= -1.44 - 1
= -2.44
Therefore, y-intercept → (0, -2.44)
Domain: This function is defined for all real values of x.
Therefore, Domain: (-∞, ∞)
Range: Since this function is defined for all real values of x, we will get a distinct output value for every distinct input values.
Therefore, Range: (-∞, ∞)