The required distance would be 17.88 units coordinates A(-4,5) and B(12,13) and the horizontal distance is 16 units and the vertical distance is 8 units from A to B which are determined by the graphing method.
<h3>What is the distance between two points?</h3>
The distance between two points is defined as the length of the line segment between two places representing their distance.
Given AB with coordinates A(-4,5) and B(12,13).
The formula of the distance between two points is A(x₁, y₁) and B(x₂, y₂) is given by: d (A, B) = √ (x₂ – x₁)² + (y₂ – y₁) ².
x₁ = -4, y₁ = 5
x₂ = 12, y₂ = 13
distance = √ (12 – (-4))² + (13 – 5)²
distance = √ (12 + 4)² + (8)²
distance = √ (16)² + (8)²
distance = √ (256 + 64)
distance = √320
distance = 17.88 units
The horizontal distance is 16 units and the vertical distance is 8 units from A to B which are determined by the graphing method.
Learn more about the distance between two points here:
brainly.com/question/15958176
#SPJ1
Answer:
4m^2-3mn^2+5
Step-by-step explanation:
Answer:
FV= 1,000*(1.12^n)
Step-by-step explanation:
Giving the following information:
Initial investment= $1,000
Increase rate= 12% = 0.12
We need to formulate an exponential equation to show the value in n years.
<u>To calculate the Future Value, we need to use the following formula:</u>
FV= PV*(1+i)^n
Being:
FV= Future Value
PV= Initial Investment
i= increase rate
n= number of periods
FV= 1,000*(1.12^n)
<u>For example, for one year:</u>
FV= 1,000*(1.12^1)
FV= $1,120
For 3 years:
FV= 1,000*(1.12^3)
FV= $1,404.93
Answer:
<em>The correct answer is: A</em>
Step-by-step explanation:
<u>Points on a Numeric Line</u>
The numeric line shown in the figure has four points A, B, C, and D. It's clear that each marked division of the line has a value of 1/4 units and all four points are below the reference zero, thus all are negative.
Point A is clearly on the -2 mark, thus
A=-2
Point B is one mark above A, thus it's located at:


Point C is one mark below -1, thus:

Finally, point D is one mark below 0:

The correct answer is: A