This is quite a complex problem. I wrote out a really nice solution but I can't work out how to put it on the website as the app is very poorly made. Still, I'll just have to type it all in...
Okay so you need to use a technique called logarithmic differentiation. It seems quite unnatural to start with but the result is very impressive.
Let y = (x+8)^(3x)
Take the natural log of both sides:
ln(y) = ln((x+8)^(3x))
By laws of logarithms, this can be rearranged:
ln(y) = 3xln(x+8)
Next, differentiate both sides. By implicit differentiation:
d/dx(ln(y)) = 1/y dy/dx
The right hand side is harder to differentiate. Using the substitution u = 3x and v = ln(x+8):
d/dx(3xln(x+8)) = d/dx(uv)
du/dx = 3
Finding dv/dx is harder, and involves the chain rule. Let a = x+ 8:
v = ln(a)
da/dx = 1
dv/da = 1/a
By chain rule:
dv/dx = dv/da * da/dx = 1/a = 1/(x+8)
Finally, use the product rule:
d/dx(uv) = u * dv/dx + v * du/dx = 3x/(x+8) + 3ln(x+8)
This overall produces the equation:
1/y * dy/dx = 3x/(x+8) + 3ln(x+8)
We want to solve for dy/dx, achievable by multiplying both sides by y:
dy/dx = y(3x/(x+8) + 3ln(x+8))
Since we know y = (x+8)^(3x):
dy/dx = ((x+8)^(3x))(3x/(x+8) + 3ln(x+8))
Neatening this up a bit, we factorise out 3/(x+8):
dy/dx = (3(x+8)^(3x-1))(x + (x+8)ln(x+8))
Well wasn't that a marathon? It's a nightmare typing that in, I hope you can follow all the steps.
I hope this helped you :)
14 my teacher just told me the answer
Answer:she errored
Step-by-step explanation:
a. If we subtract 75 from 550 twice, we get 400, which is the third member to join. Subtract 75 from 400, we get $325, the fourth member to join.
b. It is not possible that a member would join for free if it was a large family. 75 does not fit into 550 evenly. You can prove this by solving the expression 550÷75.
c. The lowest amount that a member would pay to join is $25.00. It would be the 7th member.
A consistent system has at least 1 solution, it could have more.
a consistent system that has exactly 1 solution, is an independent system.
a consistent system that has infinitely many solutions, namely, both equations are really the same equation in disguise, is a dependent system.