So lets try to prove it,
So let's consider the function f(x) = x^2.
Since f(x) is a polynomial, then it is continuous on the interval (- infinity, + infinity).
Using the Intermediate Value Theorem,
it would be enough to show that at some point a f(x) is less than 2 and at some point b f(x) is greater than 2. For example, let a = 0 and b = 3.
Therefore, f(0) = 0, which is less than 2, and f(3) = 9, which is greater than 2. Applying IVT to f(x) = x^2 on the interval [0,3}.
Learn more about Intermediate Value Theorem on:
brainly.com/question/11377865
#SPJ4
Answer:
p(r+1)
Step-by-step explanation:
Hope this helps
<h3>
Answer: angle 1 (choice A)</h3>
This is because angles 1 and 4 are vertical angles. Such angles form whenever we have an X shape like this. Vertical angles are always opposite one another and they are always the same measure. The fact that lines k and l are parallel has no relevance (so they could easily be not parallel and the two angles mentioned are still congruent).
Not sure question is complete, assumptions however
Answer and explanation:
Given the above, the function of the population of the ants can be modelled thus:
P(x)= 1600x
Where x is the number of weeks and assuming exponential growth 1600 is constant for each week
Assuming average number of ants in week 1,2,3 and 4 are given by 1545,1520,1620 and 1630 respectively, then we would round these numbers to the nearest tenth to get 1500, 1500, 1600 and 1600 respectively. In this case the function above wouldn't apply, as growth values vary for each week and would have to be added without using the function.
On one hand, the function above could be used as an estimate given that 1600 is the average growth of the ants per week hence a reasonable estimate of total ants in x weeks can be made using the function.
Answer:
Pablo drove 268 miles.
Step-by-step explanation:
266.87-14.95=251.92
251 .92÷0.94=268
Could I please have Brainliest?