Ex: (A) 19.95÷29.95 and you will get your answers
I think the answer to your question
is the last question meaning you add the number up to equal 13.1 and add on the negative so they both equal -13.1
Answer:
To complete the problem statement it is needed:
1.- the volume and weight capacity of the truck, because these will become the constraints.
2.- In order to formulate the objective function we need to have an expression like this:
" How many of each type of crated cargo should the company shipped to maximize profit".
Solution:
z(max) = 175 $
x = 1
y = 1
Assuming a weight constraint 700 pounds and
volume constraint 150 ft³ we can formulate an integer linear programming problem ( I don´t know if with that constraints such formulation will be feasible, but that is another thing)
Step-by-step explanation:
crated cargo A (x) volume 50 ft³ weigh 200 pounds
crated cargo B (y) volume 10 ft³ weigh 360 pounds
Constraints: Volume 150 ft³
50*x + 10*y ≤ 150
Weight contraint: 700 pounds
200*x + 360*y ≤ 700
general constraints
x ≥ 0 y ≥ 0 both integers
Final formulation:
Objective function:
z = 75*x + 100*y to maximize
Subject to:
50*x + 10*y ≤ 150
200*x + 360*y ≤ 700
x ≥ 0 y ≥ 0 integers
After 4 iterations with the on-line solver the solution
z(max) = 175 $
x = 1
y = 1
The demand curve of ice melt would shift to the right. This is because the conditions will make ice melt a necessity so people will buy greater quantities for a higher price.
The answer is the first one, impossible. This is because it shows that there are red and black cards, but never mentions that there are blue cards at all. This also means there are no blue cards. How could you get a blue card when there are none? It's impossible.