Answer:
1.387 moles
Explanation:
Step 1:
The balanced equation for the reaction. This is illustrated below:
4Fe + 3O2 —> 2Fe2O3
Step 2:
Determination of the number of mole of Fe in 155.321g of Fe. This can be achieved by doing the following:
Mass of Fe = 155.321g
Molar Mass of Fe = 56g/mol
Number of mole of Fe =?
Number of mole = Mass/Molar Mass
Number of mole of Fe = 155.321/56
Number of mole of Fe = 2.774 mol
Step 3:
Determination of the number of mole of rust (Fe2O3) produced. This is illustrated below:
From the balanced equation above,
4 moles of Fe produced 2 moles of Fe2O3.
Therefore, 2.774 moles of Fe will produce = (2.774 x 2)/4 = 1.387 moles of Fe2O3.
Therefore, 1.387 moles of rust (Fe2O3) is produced from the reaction
Answer:
The number, such as 98.7 FM, of a radio station represents:
- <u>the frequency in which is transmitted the radio signal</u>.
Explanation:
<em>The radio FM is the modulated frequency, which means that all the information is sent by just a signal, with different frequencies which difference them</em>, <u>the radio FM use the frequencies from 88 MHz until 108 Mhz (MHz is a measuring unit for the frequency), with a minimal space among them of 0.2 MHz</u>, this last means that you could find a signal in 88.0 MHz, and the next should be 88.2 MHz, next 88.4 MHz and so (at least, regularly the space between two frequencies is more than 0.2 MHz).
Moles=volume*concentration
=0.1*.83
=.083 Moles of HC2H3O2
Mole ratio between HC2H3O2 and CO2 is 1:1
This means .083 Moles of CO2
Mass =Moles*Rfm of CO2
=.083*(12+16+16)
=3.7grams
Answer:
you can simply answer vl\t1=v2/t2