Answer:
22.9 yards
Step-by-step explanation:
Since b² = a² - c² where a = vertex of major axis, 2a = 50 yards the length of the major axis. So , a = 50/2 = 25 yards. c = focus of chamber = 10 yards from center and b = vertex of minor axis.
So, b = ±√(a² - c²)
= ±√(25² - 10²)
= ±√(625 - 100)
= ±√525
= ±22.91 yards
≅ ± 22.9 yards
Since b = length of minor axis from center of chamber = 22.91 yards. So, he should build the whisper chamber 22.9 yards out from the center of the chamber.
Step-by-step explanation:
Given that,
We have to find the value of m∠E.
Here, two sides are equal, thus it is an isosceles triangle. As the two sides are equal, so their angles must be equal. So, ∠E and ∠D will be equal. Let us assume the measures of both ∠E and ∠D as x.
→ Sum of all the interior angles of ∆ = 180°
→ ∠E + ∠D + ∠F = 180°
→ 116° + x + x = 180°
→ 2x = 180° – 116°
→ 2x = 64°
→ x = 64° ÷ 2
→<u> x = 32°</u>
Henceforth,
→ m∠E = x
→ m∠E = 32°

~
Power functions are not linear, therefore B,D,F are the answers
Step-by-step explanation:
= -4 + 12 + (-9)
= -4 + 12 - 9
= -4 + 3
= -1