As you may already be familiar, these functions f(x) and g(x) are piecewise. They consist of multiple functions with different domains.
1. For #1, the given input is f(0). Since 0≤1, you should use the first equation to solve. f(0)=3(0)-1 ➞ f(0)=-1
2. Continue to evaluate the given input for the domains given. 1≤1, therefore f(1)=3(1)-1➞f(1)=2
3. 5>1, therefore f(5)=1-2(5)➞f(5)=-9
4. -4≤1; f(-4)=3(-4)-1➞f(-4)=-13
5. -3<0<1; g(0)=2
6. -3≤-3; g(-3)=3(-3)-1➞g(-3)=-10
7. 1≥1; g(1)=-3(1)➞g(1)=-3
8. 3≥1; g(3)=-3(3)➞g(3)=-9
9. -5≤-3; g(-5)=3(-5)-1➞g(-5)=-16
Hope this helps! Good luck!
Answer: The required matrix is
![T=\left[\begin{array}{ccc}-1&3\\2&4\end{array}\right] .](https://tex.z-dn.net/?f=T%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%263%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20.)
Step-by-step explanation: We are given to find the transition matrix from the bases B to B' as given below :
B = {(-1,2), (3, 4)) and B' = {(1, 0), (0, 1)}.
Let us consider two real numbers a, b such that

Again, let us consider reals c and d such that

Therefore, the transition matrix is given by
![T=\left[\begin{array}{ccc}-1&3\\2&4\end{array}\right] .](https://tex.z-dn.net/?f=T%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%263%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20.)
Thus, the required matrix is
![T=\left[\begin{array}{ccc}-1&3\\2&4\end{array}\right] .](https://tex.z-dn.net/?f=T%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%263%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20.)
X= 2i(square root of 6), -2i(square root of 6)
Answer:
perfect square
Step-by-step explanation:
A perfect square is a number multiplied by itself:
16 = 4^2 = 4 * 4
Answer:
numbers expressed using exponents are called powers