Answer: 100 grams of the parent isotope will remain after one half life.
Explanation:
Mass of the isotope present at initial stage = 
The mass of the parent isotope left after the time ,t=N
Time taken by the samle ,t = 
The half life of the sample :


![\ln[N]=ln[N^o]-\frac{0.693}{t_{\frac{1}{2}}}\times t_{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Cln%5BN%5D%3Dln%5BN%5Eo%5D-%5Cfrac%7B0.693%7D%7Bt_%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%5Ctimes%20t_%7B%5Cfrac%7B1%7D%7B2%7D%7D)
![2=\frac{[N_o]}{[N]}](https://tex.z-dn.net/?f=2%3D%5Cfrac%7B%5BN_o%5D%7D%7B%5BN%5D%7D)
![[N]=\frac{N_o}{2}=\frac{200 g}{2}=100 g](https://tex.z-dn.net/?f=%5BN%5D%3D%5Cfrac%7BN_o%7D%7B2%7D%3D%5Cfrac%7B200%20g%7D%7B2%7D%3D100%20g)
100 grams of the parent isotope will remain after one half life.
It will kill the envirment
<span>That would be "Chorionic Villus Sampling"</span>
Answer:
As a cell grows bigger, its internal volume enlarges and the cell membrane expands. Unfortunately, the volume increases more rapidly than does the surface area, and so the relative amount of surface area available to pass materials to a unit volume of the cell steadily decreases.