
the denominator cannot be zero, because the division by zero is not defined, therefore:
![\begin{gathered} x^2-9=0 \\ \text{Solving for x:} \\ x^2=9 \\ \sqrt[]{x^2}=\sqrt[]{9} \\ x=\pm3 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%5E2-9%3D0%20%5C%5C%20%5Ctext%7BSolving%20for%20x%3A%7D%20%5C%5C%20x%5E2%3D9%20%5C%5C%20%5Csqrt%5B%5D%7Bx%5E2%7D%3D%5Csqrt%5B%5D%7B9%7D%20%5C%5C%20x%3D%5Cpm3%20%5Cend%7Bgathered%7D)
Therefore the domain of (f o g)(x) is:
Answer:
-13a^2 + 170ab - 13b^2.
Step-by-step explanation:
1. 36(a+b)^2 - 49(a-b)^2
This is the difference of 2 squares: a^2 - b^2 = (a + b)(a - b).
36(a+b)^2 - 49(a-b)^2
= (6(a + b) + 7(a - b))( 6(a + b) - 7(a - b))
= (6a + 7a + 6b - 7b)( 6a - 7a + 6b + 7b)
= (13a - b)(-a + 13b)
If you require the expansion of this it is:
-13a^2 + 170ab - 13b^2.
Answer:
3 units on the right and 2 on the left
4) a. x+y=1–(1)
y=2x-8—(2)
(2) into (1)
x+(2x-8)=1
3x-8=1
3x=1+8
x=9/3
x=3—(3)
(3) into (2)
y=2(3)-8
y=-2
ans x=3, y=-2
b. x+y=19—(1)
y=5x+1—(2)
(2) into (1)
x+(5x+1)=19
6x+1=19
6x=19-1
x=18/6
x=3—(3)
(3) into (2)
y=5(3)+1
y=16
ans x=3, y=16
c.x+y=-2—(1)
y=x-10—(2)
(2) into (1)
x+(x-10)=-2
2x-10=-2
2x=-2+10
x=8/2
x=4–(3)
(3) into (2)
y=4-10
y=-6
ans x=4, y=-6
5) 3x=y—(1)
x=y-16–(2)
(2) into (1)
3(y-16)=y
3y-48=y
2y=48
y=48/2
y=24–(3)
(3) into (2)
x=24-16
x=8
ans x=8, y=24