The x intercept would be -3 I believe, please mark me as brainliest if this helps and comment if you would like an explanation
Slope=-4 or -4/1
Work:
(2, 5) (3, 1)
x1 y1. x2 y2
M= y2-y1/x2-x1
M= 1-5/3-2
M= -4/1
M=-4
B a counterclockwise rotation about the origin of 90°
under a counterclockwise rotation about the origin
a point ( x , y ) → (- y, x)
figure Q to figure Q'
( 4,2 ) → (- 2, 4 )
(7, 5 ) → (- 5, 7 )
(3, 7 ) → (- 7 , 3 )
(2, 4 ) → (- 4, 2 )
(5, 4 ) → (- 4, 5 )
the coordinates of the original points of the vertices of Q map to the corresponding points on the image Q'
Answer: a) √50
b) n = 1 + 7i
Step-by-step explanation:
first, the modulus of a complex number z = a + bi is
IzI = √(a^2 + b^2)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nI = 3√10
Im + n I = √(a^2 + b^2 + 2^2 + 6^2)= 3√10
= √(a^2 + b^2 + 40) = 3√10
a^2 + b^2 + 40 = 3^2*10 = 9*10 = 90
a^2 + b^2 = 90 - 40 = 50
√(a^2 + b^2 ) = InI = √50
The modulus of n must be equal to the square root of 50.
now we can find any values a and b such a^2 + b^2 = 50.
for example, a = 1 and b = 7
1^2 + 7^2 = 1 + 49 = 50
Then a possible value for n is:
n = 1 + 7i
Answer:
3.
Step-by-step explanation:
Implicit differentiation:
x^2 y + (xy)^3 + 3x = 0
x^2 y + x^3y^3 + 3x = 0
Using the product rule:
2x* y + x^2*dy/dx + 3x^2 y^3 + x^3* (d(y^3)/dx) + 3 = 0
2xy + x^2 dy/dx + 3x^2 y^3 + x^3* 3y^2 dy/dx + 3 = 0
dy/dx(x^2 + 3y^2x^3) = (-2xy - 3x^2y^3 - 3)
dy/dx= (-2xy - 3x^2y^3 - 3) / (x^2 + 3y^2x^3)
At the point (-1, 3).
the derivative = (6 - 81 - 3)/(1 -27)
= -78/-26
= 3.