Answer:- 2.92 kJ of heat is released.
Solution:- We have water at 100 degree C and it's going to be cool to 15 degree C.
So, change in temperature,
= 15 - 100 = -85 degree C
mass of water, m = 8.2 g
specific heat of water, c = 
The equation used for solving this type of problems is:

Let's plug in the values in the equation and solve it for q which is the heat energy:
q = (8.2)(4.184)(-85)
q = -2916.248 J
They want answer in kJ. So, let's convert J to kJ and for this we divide by 1000.

q = -2.92 kJ
Negative sign indicates the heat is released. So, in the above process of coiling of water, 2.92 kJ of heat is released.
Answer:
A) 22.4L
Explanation:
we know, ideal gas law states
PV=nRT
V=nRT/P
At STP,
T= 273.15K P=1atm R=0.082L.atm/mol/K n=1 mole
V=(1*0.082*273.15)/ 1
V=22.4L
Answer:
(c) P and Sb
Explanation:
We can determine the number of valence electrons of an element:
- If it belongs to Groups 1 and 2, the number of valence electrons is equal to the number of group and the differential electron occupies the s subshell.
- If it belongs to the groups 13-18, the number of valence electrons is equal to: "Number of group - 10" and the differential electron occupies the p subshell.
Which pair of elements have the same valence electronic configuration of np³?
(a) O and Se. NO. They belong to the group 16 and the valence electron configuration is ns² np⁴.
(b) Ge and Pb. NO. They belong to the group 14 and the valence electron configuration is ns² np².
(c) P and Sb. YES. They belong to the group 15 and the valence electron configuration is ns² np³.
(d) K and Mg. NO. They belong to the groups 1 and 2 and the valence electron configuration is ns¹ and ns².
(e) Al and Ga. NO. They belong to the group 13 and the valence electron configuration is ns² np¹.
Stomatal pores in plants regulate the amount of water and solutes within them by opening and closing their guard cells using osmotic pressure. In order for plants to produce energy and maintain cellular function, their cells undergo the highly intricate process of photosynthesis .
True, it would slow down.