Answer:
As Per Provided Information
- Length of diagonal of square is 4√2 cm
We have been asked to find the length , perimeter and area of square .
First let's calculate the side of square .
Using Formulae

On substituting the value in above formula we obtain

<u>Therefore</u><u>,</u>
- <u>Length </u><u>of </u><u>its </u><u>side </u><u>is </u><u>4</u><u> </u><u>cm</u><u>.</u>
Finding the perimeter of square.

Substituting the value we obtain

<u>Therefore</u><u>,</u>
- <u>Perimeter </u><u>of </u><u>square </u><u>is </u><u>1</u><u>6</u><u> </u><u>cm </u><u>.</u>
Finding the area of square .

Substituting the value we get

<u>Therefore</u><u>,</u>
- <u>Area </u><u>of</u><u> </u><u>square</u><u> </u><u>is </u><u>1</u><u>6</u><u> </u><u>cm²</u><u>.</u>
Answer:
See explanation
Step-by-step explanation:
We want to verify that:

Verifying from left, we have

Expand the perfect square in the right:

We expand to get:

We simplify to get:

Cancel common factors:

This finally gives:

By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
<h3>How to evaluate a piecewise function at given values</h3>
In this question we have a <em>piecewise</em> function formed by three expressions associated with three respective intervals. We need to evaluate the expression at a value of the <em>respective</em> interval:
<h3>r(- 3): </h3>
-3 ∈ (- ∞, -1]
r(- 3) = - 2 · (- 3) + 9
r (- 3) = 15
<h3>r(- 1):</h3>
-1 ∈ (- ∞, -1]
r(- 1) = - 2 · (- 1) + 9
r (- 1) = 11
<h3>r(1):</h3>
1 ∈ (-1, 5)
r(1) = 2 · 1² - 4 · 1 - 5
r (1) = - 7
<h3>r(5):</h3>
5 ∈ [5, + ∞)
r(5) = 4 · 5 - 7
r (5) = 13
By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
To learn more on piecewise functions: brainly.com/question/12561612
#SPJ1
- Here the line is parallel to x axis
- Slope (m) will be tan(0)=0
- Y intercept is 1.
Y is constant.
The equation of line will be