Answer:
b
Step-by-step explanation:
bearing in mind that 4¾ is simply 4.75.
![\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$600\\ r=rate\to 5\%\to \frac{5}{100}\dotfill &0.05\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\dotfill &1\\ t=years\dotfill &3 \end{cases} \\\\\\ A=600\left(1+\frac{0.05}{1}\right)^{1\cdot 3}\implies A=600(1.05)^3\implies A=694.575 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%20%5Ctextit%7BCompound%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%5Cleft%281%2B%5Cfrac%7Br%7D%7Bn%7D%5Cright%29%5E%7Bnt%7D%20%5Cquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cdotfill%20%26%5C%24600%5C%5C%20r%3Drate%5Cto%205%5C%25%5Cto%20%5Cfrac%7B5%7D%7B100%7D%5Cdotfill%20%260.05%5C%5C%20n%3D%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Ctextit%7Btimes%20it%20compounds%20per%20year%7D%5C%5C%20%5Ctextit%7Bannually%2C%20thus%20once%7D%20%5Cend%7Barray%7D%5Cdotfill%20%261%5C%5C%20t%3Dyears%5Cdotfill%20%263%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D600%5Cleft%281%2B%5Cfrac%7B0.05%7D%7B1%7D%5Cright%29%5E%7B1%5Ccdot%203%7D%5Cimplies%20A%3D600%281.05%29%5E3%5Cimplies%20A%3D694.575%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

well, the interest for each is simply A - P
695.575 - 600 = 95.575.
862.032 - 750 = 112.032.
Step-by-step explanation:
a. (3 - 2/3) ÷ (4/3 x 7)
= [(3 x 3) / (1 x 3) - 2/3] ÷ 28/3
= (9/3 - 2/3) ÷ 28/3
= 7/3 x 3/28
= 21/84
= (21 x 1) / (21 x 4)
= 1/4
b. 2/3 ÷ 5/6 - 2/5
= 2/3 x 6/5 - 2/5
= 12/15 - 2/5
= (3 x 4) / (3 x 5) - 2/5
= 4/5 - 2/5
= 2/5
c. (- 3/4 + 1/2) ÷ (2/5 - 5/2)
= [- 3/4 + (1 x 12) / (2 x 2)] ÷ [(2 x 2) / (5 x 2) - (5 x 5) / (2 x 5)]
= (- 3/4 + 12/4) ÷ (4/10 - 25/10)
= 9/4 ÷ (- 21/10)
= 9/4 x - 10/21
= - 90/84
= (6 x - 15) / (6 x 14)
= - 15/14.
If you have any doubt, then you can ask me in the comments.