I believe it could be either B or D.
The midpoint of the line segment with endpoints at the given coordinates (-6,6) and (-3,-9) is 
<u>Solution:</u>
Given, two points are (-6, 6) and (-3, -9)
We have to find the midpoint of the segment formed by the given points.
The midpoint of a segment formed by
is given by:


Plugging in the values in formula, we get,

Hence, the midpoint of the segment is 
Answer:
what year was his trip? I can figure it out I just need the year
Step-by-step explanation:
Answer:

Step-by-step explanation:
We have the expression:

The first thing we want to do, is to have the same denominator in both equations, then we need to multiply the first term by (2/2), so the denominator becomes 4*x
We will get:

Now we can directly add the terms to get:

We can't simplify this anymore
For this case we have that by definition, the equation of a line of the slope-intersection form is given by:

Where:
m: It's the slope
b: It is the cut-off point with the y axis
While the point-slope equation of a line is given by:

Where:
m: It's the slope
It is a point through which the line passes
In this case we have a line through:
(8,4) and (0,2)
Therefore, its slope is:

Its point-slope equation is:

Then, we manipulate the expression to find the equation of the slope-intersection form:

Therefore, the cut-off point with the y-axis is 
ANswer:
