Answer:
If the walking time is greater than or equal to 38.225 hours, than it exceeds 95% probability that is lie in top 5%.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 30 hours
Standard Deviation, σ = 5 hours
We are given that the distribution of waking time is a bell shaped distribution that is a normal distribution.
Formula:
We have to find the value of x such that the probability is 0.95
Calculation the value from standard normal z table, we have,
Thus, if the walking time is greater than or equal to 38.225 hours, than it exceeds 95% probability that is lie in top 5%.
Hello!
Simplifying
5x2 + -7x + -3 = 8
Reorder the terms:
-3 + -7x + 5x2 = 8
Solving
-3 + -7x + 5x2 = 8
Solving for variable 'x'.
Reorder the terms:
-3 + -8 + -7x + 5x2 = 8 + -8
Combine like terms: -3 + -8 = -11
-11 + -7x + 5x2 = 8 + -8
Combine like terms: 8 + -8 = 0
-11 + -7x + 5x2 = 0
Begin completing the square. Divide all terms by
5 the coefficient of the squared term:
Divide each side by '5'.
-2.2 + -1.4x + x2 = 0
Move the constant term to the right:
Add '2.2' to each side of the equation.
-2.2 + -1.4x + 2.2 + x2 = 0 + 2.2
Reorder the terms:
-2.2 + 2.2 + -1.4x + x2 = 0 + 2.2
Combine like terms: -2.2 + 2.2 = 0.0
0.0 + -1.4x + x2 = 0 + 2.2
-1.4x + x2 = 0 + 2.2
Combine like terms: 0 + 2.2 = 2.2
-1.4x + x2 = 2.2
The x term is -1.4x. Take half its coefficient (-0.7).
Square it (0.49) and add it to both sides.
Add '0.49' to each side of the equation.
-1.4x + 0.49 + x2 = 2.2 + 0.49
Reorder the terms:
0.49 + -1.4x + x2 = 2.2 + 0.49
Combine like terms: 2.2 + 0.49 = 2.69
0.49 + -1.4x + x2 = 2.69
Factor a perfect square on the left side:
(x + -0.7)(x + -0.7) = 2.69
Calculate the square root of the right side: 1.640121947
Break this problem into two subproblems by setting
(x + -0.7) equal to 1.640121947 and -1.640121947.
Subproblem 1
x + -0.7 = 1.640121947
Simplifying
x + -0.7 = 1.640121947
Reorder the terms:
-0.7 + x = 1.640121947
Solving
-0.7 + x = 1.640121947
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.7' to each side of the equation.
-0.7 + 0.7 + x = 1.640121947 + 0.7
Combine like terms: -0.7 + 0.7 = 0.0
0.0 + x = 1.640121947 + 0.7
x = 1.640121947 + 0.7
Combine like terms: 1.640121947 + 0.7 = 2.340121947
x = 2.340121947
Simplifying
x = 2.340121947
Subproblem 2
x + -0.7 = -1.640121947
Simplifying
x + -0.7 = -1.640121947
Reorder the terms:
-0.7 + x = -1.640121947
Solving
-0.7 + x = -1.640121947
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.7' to each side of the equation.
-0.7 + 0.7 + x = -1.640121947 + 0.7
Combine like terms: -0.7 + 0.7 = 0.0
0.0 + x = -1.640121947 + 0.7
x = -1.640121947 + 0.7
Combine like terms: -1.640121947 + 0.7 = -0.940121947
x = -0.940121947
Simplifying
x = -0.940121947
Solution
The solution to the problem is based on the solutions
from the subproblems.
x = {2.340121947, -0.940121947}
Answer:
1100 minutes
Step-by-step explanation:
Equation: 35=.05x-20
Why? x is the amount of minutes on his phone. Each minute is 0.05 hence 0.05x. Subtract 20 because that is the flat rate
55=.05x
x=1100
Therefore he was on his phone for 1100 minutes
Well what two numbers multiply to get -8 and add to get -2?
Well, to get -8, we either have (-1,8),(-2,4),(-4,2),(-8,1)
8-1=7
-2+4=2
2-4=-2
1-8=-7
Thus it should be (-4,2),
This means we should get (X-4)(X+2)