1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Norma-Jean [14]
4 years ago
15

What is the radius of a sphere with a volume of

Mathematics
1 answer:
Nataly [62]4 years ago
8 0

Answer:

Radius, r = 10.64 m

Step-by-step explanation:

The formula of a spherical shaped object is given by :

V=\dfrac{4}{3}\pi r^3

r is radius of a sphere

r=(\dfrac{3V}{4\pi })^{1/3}  \\\\r=(\dfrac{3\times 5044}{4\times 3.14 })^{1/3}  \\\\r=10.64\ m

So, the radius of a sphere is 10.64 m.

You might be interested in
Some engines require oil to be mixed with gasoline. For every gallon of gas used, 4 ounces of oil should be added. How much gas
Soloha48 [4]

2 gallons because 4 ounces are in one gallon in gas

i think

3 0
4 years ago
Read 2 more answers
I don't understand this. please help me, much appreciated !!
nevsk [136]

Apparently, the calculator at the link in your lesson is fully capable of giving you the necessary numbers. My own TI-84 work-alike gives me the account balances, but the rest of the numbers need to be figured.

In 30 years, there are 12×30 = 360 months, or 4×30 = 120 quarters. See the calculator results below. Your table can be filled in using the given information to find the contribution amount. The calculator gives the final balance. The interest amount is found by subtracting the contribution amount from the final balance.

\begin{array}{cccc}\text{Opt}&\text{Contributions}&\text{Int}&\text{Final Bal}\\1&360\cdot 25=9000&6250.50&15250.50\\2&120\cdot 75=9000&8467.04&17467.04\\3&1000&5489.17&6489.17\end{array}


3 0
3 years ago
show all work to multiply 3 plus the square root of negative 16 times 6 minus the square root of negative 64
Aloiza [94]

Answer:

\Huge \boxed{3+16i}

\rule[225]{225}{2}

Step-by-step explanation:

3+\sqrt{-16} * 6-\sqrt{-64}

Using imaginary number rule : \sqrt{-n} =\sqrt{n} *i

Where n is a positive integer.

3+\sqrt{16} *i* 6-\sqrt{64}*i

3+4i* 6-8i

Multiplying.

3+24i-8i

Combining like terms.

3+16i

\rule[225]{225}{2}

8 0
4 years ago
Read 2 more answers
In The Figure Below, What is the reflection of point D across line x=0?
nignag [31]
X=0 is actually the y axis, so the y coordinate of the reflection doesn't change, while the x coordinate changes from a negative to a positive or from a positive to a negative.
the new confidante of D is (1,-1) 
7 0
3 years ago
Find the solution of the differential equation f' (t) = t^4+91-3/t
Lynna [10]

Answer:

\displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f'(t) = t^4 + 91 - \frac{3}{t}

\displaystyle f(1) = \frac{1}{4}

<u>Step 2: Integration</u>

<em>Integrate the derivative to find function.</em>

  1. [Derivative] Integrate:                                                                                   \displaystyle \int {f'(t)} \, dt = \int {t^4 + 91 - \frac{3}{t}} \, dt
  2. Simplify:                                                                                                         \displaystyle f(t) = \int {t^4 + 91 - \frac{3}{t}} \, dt
  3. Rewrite [Integration Property - Addition/Subtraction]:                               \displaystyle f(t) = \int {t^4} \, dt + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  4. [1st Integral] Integrate [Integral Rule - Reverse Power Rule]:                     \displaystyle f(t) = \frac{t^5}{5} + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  5. [2nd Integral] Integrate [Integral Rule - Reverse Power Rule]:                   \displaystyle f(t) = \frac{t^5}{5} + 91t - \int {\frac{3}{t}} \, dt
  6. [3rd Integral] Rewrite [Integral Property - Multiplied Constant]:                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3\int {\frac{1}{t}} \, dt
  7. [3rd Integral] Integrate:                                                                                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C

Our general solution is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C.

<u>Step 3: Find Particular Solution</u>

<em>Find Integration Constant C for function using given condition.</em>

  1. Substitute in condition [Function]:                                                               \displaystyle f(1) = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  2. Substitute in function value:                                                                         \displaystyle \frac{1}{4} = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  3. Evaluate exponents:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3ln|1| + C
  4. Evaluate natural log:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3(0) + C
  5. Multiply:                                                                                                         \displaystyle \frac{1}{4} = \frac{1}{5} + 91 - 0 + C
  6. Add:                                                                                                               \displaystyle \frac{1}{4} = \frac{456}{5} - 0 + C
  7. Simplify:                                                                                                         \displaystyle \frac{1}{4} = \frac{456}{5} + C
  8. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle -\frac{1819}{20} = C
  9. Rewrite:                                                                                                         \displaystyle C = -\frac{1819}{20}
  10. Substitute in <em>C</em> [Function]:                                                                             \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

∴ Our particular solution to the differential equation is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}.

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

7 0
3 years ago
Other questions:
  • a rectangle is 6 units "wide" and x -8 use long it has the same area of a triangle with a height of 7 units and a base of x minu
    9·1 answer
  • PLEASE HELP ASAP!!
    5·1 answer
  • Larry and Donna bought a sofa at the sale price of $1,344. The original price of the sofa was $1,920. Find the discount rate
    13·1 answer
  • What is the equivalent ratio of 9 to 12? <br>​
    7·2 answers
  • Sherry needs to sell T-shirts as a fundraiser for a charity. She starts with 40 T-shirts and begins selling at a constant rate o
    7·1 answer
  • Interior and Exterior Angle polygons. I need help to find the measure of a regular decagon. To find each interior angle and to f
    12·1 answer
  • What is 1+1+8-2? very confused, PLEASE HELP!!​
    7·2 answers
  • 705.6 is what percent of 672
    12·2 answers
  • Michael has $68. Craig has $24 less than Michael has. Michael spends $20 on a new hat. Part A: Write an equation where the solut
    12·1 answer
  • Five times my age 4 years ago is the same as 3 times my age in 2 years
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!