1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
3 years ago
5

Find the solution of the differential equation f' (t) = t^4+91-3/t

Mathematics
1 answer:
Lynna [10]3 years ago
7 0

Answer:

\displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f'(t) = t^4 + 91 - \frac{3}{t}

\displaystyle f(1) = \frac{1}{4}

<u>Step 2: Integration</u>

<em>Integrate the derivative to find function.</em>

  1. [Derivative] Integrate:                                                                                   \displaystyle \int {f'(t)} \, dt = \int {t^4 + 91 - \frac{3}{t}} \, dt
  2. Simplify:                                                                                                         \displaystyle f(t) = \int {t^4 + 91 - \frac{3}{t}} \, dt
  3. Rewrite [Integration Property - Addition/Subtraction]:                               \displaystyle f(t) = \int {t^4} \, dt + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  4. [1st Integral] Integrate [Integral Rule - Reverse Power Rule]:                     \displaystyle f(t) = \frac{t^5}{5} + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  5. [2nd Integral] Integrate [Integral Rule - Reverse Power Rule]:                   \displaystyle f(t) = \frac{t^5}{5} + 91t - \int {\frac{3}{t}} \, dt
  6. [3rd Integral] Rewrite [Integral Property - Multiplied Constant]:                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3\int {\frac{1}{t}} \, dt
  7. [3rd Integral] Integrate:                                                                                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C

Our general solution is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C.

<u>Step 3: Find Particular Solution</u>

<em>Find Integration Constant C for function using given condition.</em>

  1. Substitute in condition [Function]:                                                               \displaystyle f(1) = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  2. Substitute in function value:                                                                         \displaystyle \frac{1}{4} = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  3. Evaluate exponents:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3ln|1| + C
  4. Evaluate natural log:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3(0) + C
  5. Multiply:                                                                                                         \displaystyle \frac{1}{4} = \frac{1}{5} + 91 - 0 + C
  6. Add:                                                                                                               \displaystyle \frac{1}{4} = \frac{456}{5} - 0 + C
  7. Simplify:                                                                                                         \displaystyle \frac{1}{4} = \frac{456}{5} + C
  8. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle -\frac{1819}{20} = C
  9. Rewrite:                                                                                                         \displaystyle C = -\frac{1819}{20}
  10. Substitute in <em>C</em> [Function]:                                                                             \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

∴ Our particular solution to the differential equation is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}.

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
A greeting card company can produce a box of cards for $7.50. If the initial investment by the company was $50,000, how many box
larisa86 [58]

Answer:

If cost of one box of card is $7.50 then the no of cards produced is 6667 cards and if cost of one box of card is $10.50 then the no of cards produced is 4762 cards

Step-by-step explanation:

The cost of one box of cards = $7.50

Initial investment = $50,000

No of box of cards produced = Initial investment / cost of one box of card

No of box of cards produced = 50,000/7.50

No of box of cards produced = 6667 cards.

if the cost of one box of cards is increased = $10.50

No of box of cards produced = Initial investment / cost of one box of card

No of box of cards produced = 50,000/10.50

No of box of cards produced = 4762 cards.

So, if cost of one box of card is $7.50 then the no of cards produced is 6667 cards and if cost of one box of card is $10.50 then the no of cards produced is 4762 cards

5 0
4 years ago
The 6th term of a GP is 2000. Find its first term if it's common ratio is 10​
dimaraw [331]

so ar^  = 2000 and you told me r = 10

a(10^5) = 2000

a = 2000/100000 = 1/50

4 0
3 years ago
Y ≤ -4(x – 13) – 2 when y = 38?
ale4655 [162]

Answer:

hear you go

Step-by-step explanation:

y\leq-4(x-13)-2

38\leq-4x+52

x\geq-3.5

:)

5 0
3 years ago
Order the following from least to greatest 7 -11 0 10 -3
dem82 [27]
-11, -3, 0, 7, 10
(-11 is least and 10 is greatest)
5 0
3 years ago
The amount of money in an account may increase due to rising stock prices and decrease due to falling stock prices. Marco is stu
sasho [114]

Answer:

Step-by-step explanation:

Account A: Decreasing at 8 % per year

Account B: Decreasing at 10.00 % per year

The amount f(x), in dollars, in account A after x years is represented by the function below:

f(x) = 10,125(1.83)x

Account B shows the greater percentage

change

Step-by-step explanation:

Part A: Percent change from exponential

formula

f(x) = 9628(0.92)*

The general formula for an exponential

function is

y = ab^x, where

b = the base of the exponential function.

if b < 1, we have an exponential decay

function.

f(x) decreases as x increases.

Account A is decreasing each year.

We can rewrite the formula for an

exponential decay function as:

y= a(1 – b)”, where

1- b = the decay factor

b = the percent change in decimal

form

If we compare the two formulas, we find

0.92 = 1- b

b = 1 - 0.92 = 0.08 = 8 %

The account is decreasing at an annual rate of 8%. The account is decreasing at an annual rate of 10.00%.

Account B recorded a greater percentage change in the amount of money over the previous year.

4 0
3 years ago
Other questions:
  • Is x^3 *x^3 *x^3 equivalent to x^3*3*3 why or why not
    7·1 answer
  • Simplify 6r - 5t - 8r - 4t
    7·2 answers
  • PLEASE HELP ON MATH!
    9·1 answer
  • Suppose you rolled a twelve-sided number cube instead of a standard six-sided one. How would the probability of these events cha
    11·2 answers
  • Ab|| and b||c so a||c
    10·2 answers
  • How do i do the angle pairs
    8·1 answer
  • Multiply. write in simplest form. 2/5 x 15/16
    13·1 answer
  • The ministry of health was interested in the relationship between the office habits of workers and health issues. Each year, the
    14·2 answers
  • To solve by completing the square, what needs to be moved in this equation?<br> x² = 9 - 4x
    12·1 answer
  • A team won 13 games, lost 15 games, and tied 2
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!