1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
3 years ago
5

Find the solution of the differential equation f' (t) = t^4+91-3/t

Mathematics
1 answer:
Lynna [10]3 years ago
7 0

Answer:

\displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f'(t) = t^4 + 91 - \frac{3}{t}

\displaystyle f(1) = \frac{1}{4}

<u>Step 2: Integration</u>

<em>Integrate the derivative to find function.</em>

  1. [Derivative] Integrate:                                                                                   \displaystyle \int {f'(t)} \, dt = \int {t^4 + 91 - \frac{3}{t}} \, dt
  2. Simplify:                                                                                                         \displaystyle f(t) = \int {t^4 + 91 - \frac{3}{t}} \, dt
  3. Rewrite [Integration Property - Addition/Subtraction]:                               \displaystyle f(t) = \int {t^4} \, dt + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  4. [1st Integral] Integrate [Integral Rule - Reverse Power Rule]:                     \displaystyle f(t) = \frac{t^5}{5} + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  5. [2nd Integral] Integrate [Integral Rule - Reverse Power Rule]:                   \displaystyle f(t) = \frac{t^5}{5} + 91t - \int {\frac{3}{t}} \, dt
  6. [3rd Integral] Rewrite [Integral Property - Multiplied Constant]:                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3\int {\frac{1}{t}} \, dt
  7. [3rd Integral] Integrate:                                                                                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C

Our general solution is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C.

<u>Step 3: Find Particular Solution</u>

<em>Find Integration Constant C for function using given condition.</em>

  1. Substitute in condition [Function]:                                                               \displaystyle f(1) = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  2. Substitute in function value:                                                                         \displaystyle \frac{1}{4} = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  3. Evaluate exponents:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3ln|1| + C
  4. Evaluate natural log:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3(0) + C
  5. Multiply:                                                                                                         \displaystyle \frac{1}{4} = \frac{1}{5} + 91 - 0 + C
  6. Add:                                                                                                               \displaystyle \frac{1}{4} = \frac{456}{5} - 0 + C
  7. Simplify:                                                                                                         \displaystyle \frac{1}{4} = \frac{456}{5} + C
  8. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle -\frac{1819}{20} = C
  9. Rewrite:                                                                                                         \displaystyle C = -\frac{1819}{20}
  10. Substitute in <em>C</em> [Function]:                                                                             \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

∴ Our particular solution to the differential equation is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}.

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
(5 4 – 2) × (–2) = ? <br> a. 22 <br> b. –14 <br> c. 14 <br> d. –22
tamaranim1 [39]
The correct answer is b. -14
:)
6 0
3 years ago
Please solve!!!!!!!!!
Likurg_2 [28]

Answer:

A

Step-by-step explanation:

Plugging (t-2) in for x, you are left with:

f(t-2)=\sqrt{4(t-2)+1}=\\\sqrt{4t-8+1}=\\\sqrt{4t-7}or answer choice A. Hope this helps!

6 0
3 years ago
What is the perimeter, in centimeters, of the figure
xeze [42]

Answer:

30 cm

Step-by-step explanation:

add all sides and use 7 for the bottom line because 5+2=7 and use 8 for the side because 5+3=8.

5 0
3 years ago
Is PRB congruent to QSB? Justify your answer.
Serhud [2]

Answer:

   When looking at this model, and asking yourself the question, is PRB congruent to QSB? PRB is in fact congruent to QSB. Congruent means that two figures have the same shape/size, no matter if it's mirrioring or not it is congruent. In this image, PRB is one shape, and QSB is another. They have the exact same points and they're also the same shape, but one is flipped the right side up. It was also stated PQ and RS bisect eachother at point B, <p is congruent to <Q, and <R is congruent to <S proving all these connections make this figure conguent.

Step-by-step explanation:

8 0
3 years ago
Instructions: Use the ratio of a 30-60-90 triangle to solve for the variables.
Pepsi [2]

Answer:

x=20

y=10\,\sqrt{3}

Step-by-step explanation:

In the triangle we have the following trigonometric equations:

tan(60^o)=\frac{opposite}{adjacent} \\\sqrt{3} =\frac{y}{10} \\y=10\,\sqrt{3}

and also:

cos(60^o)=\frac{adjacent}{hypotenuse}\\\frac{1}{2} =\frac{10}{x}\\x=20

8 0
3 years ago
Other questions:
  • Convert 54 cm to yards
    9·2 answers
  • Using only the values given in the table for the function, f(x), what is the interval of x-values over which the function is inc
    14·2 answers
  • What is the measure of the triangle 100 points.
    12·2 answers
  • Subtracting the lowest score in a data set from the highest is the appropriate way to calculate the __________. A. range B. medi
    13·2 answers
  • Why did he let (y) equals to (1/2 sec t) ? And how did (-1) &amp; (- √2/2) become (2π/3) &amp; (3π/4) ?!!
    6·1 answer
  • The base of a square prism has an area of 16 in. The
    11·2 answers
  • 2x + 8 = -4 solve for c<br> Show work please
    11·1 answer
  • Increase £14187.13 by 14.5%<br> Give your answer rounded to 2 DP.
    14·1 answer
  • Find the distance point between ( 0,0 ) and ( 4,3 )
    12·1 answer
  • Write an interval using interval notation to describe the set of values shown above.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!