The radius of the circle tangent to sides AC and BC and to the circumcircle of triangle ABC.
r= 24.
<h3>What is the radius of the circle tangent to sides AC and BC and to the circumcircle of triangle ABC.?</h3>
Generally, the equation for side lengths AB is mathematically given as
Triangle ABC has side lengths
Where
- AB = 65,
- BC = 33,
- AC = 56.
Hence
r √ 2 · (89 √ 2/2 − r √ 2) = r(89 − 2r),
r = 89 − 65
r= 24.
In conclusion, The radius of the circle tangent to sides AC and BC and to the circumcircle of triangle ABC.
r= 24.
Read more about radius
brainly.com/question/13449316
#SPJ4
Answer:
OPTION A
Step-by-step explanation:
To find the table substitute the points on the given function and compare the values.
The given function is:
.
OPTION A:
(i) When x = -2
LHS = y = 6.
RHS = (-2)² + 2 = 4 + 2 = 6.
LHS = RHS
(ii) When x = -1
LHS = y = 3
RHS = (-1)² + 2 = 1 + 2 = 3.
LHS = RHS
(iii) When x = 0
LHS = y = 2
RHS = 0² + 2 = 2.
LHS = RHS
(iv) When x = 1
LHS = y = 3
RHS = (1)² + 2 = 1 + 2 = 3.
LHS = RHS
(v) When x = 2
LHS = y = 6
RHS = (2)² + 2 = 4 + 2 = 6
LHS = RHS
OPTION B:
(i) When x = -2
LHS = y = -2
RHS = (-2)² + 2 = 6
LHS
RHS
OPTION B is eliminated.
OPTION C:
(i) When x = -2
Using the same reason as OPTION B this option is eliminated as well.
So, OPTION A is the correct answer.
Cubic inches. Think how small a lunchbox is.