25% = 0.25
70*0.25 = 17.50
Subtract 17.50 from 70
70-17.50 = $52.50
Answer:
If A(t) represents the amount of salt in the tank at time t, the correct differential equation for A is is dA/dt = 15 - 0.005A
Option C) dA/dt = 15 - 0.005A is the correction Answer
Step-by-step explanation:
Given the data in the question;
If A(t) represents the amount of salt in the tank at time t, the correct differential equation for A is?
dA/dt = rate in - rate out
first we determine the rate in and rate out;
rate in = 3pound/gallon × 5gallons/min = 15 pound/min
rate out = A pounds/1000gallons × 5gallons/min = 5Ag/1000pounds/min
= 0.005A pounds/min
so we substitute
dA/dt = rate in - rate out
dA/dt = 15 - 0.005A
Therefore, If A(t) represents the amount of salt in the tank at time t, the correct differential equation for A is is dA/dt = 15 - 0.005A
Option C) dA/dt = 15 - 0.005A is the correction Answer
Answer:
I think the answer is 56
Step-by-step explanation:
35 divided by 5 is 7, then you multiply 7 by 8 and you get 56
3.25(4)+2(6) --plug in values
13+12 --multiply
$25 --answer