Answer:
The value of x is 4
Step-by-step explanation:
In a right triangle, if a segment is drawn from the right angle ⊥ to the hypotenuse like the given figure, then
∵ The length of one side of the right triangle = (x + 2)
∵ The length of the hypotenuse = x + 5
∴ (x + 2)² = x (x + 5)
∵ (x + 2)² = (x + 2)(x + 2)
∴ (x + 2)(x + 2) = x(x + 5)
→ Simplify the two sides
∵ (x)(x) + (x)(2) + (2)(x) + (2)(2) = (x)(x) + (x)(5)
∴ x² + 2x + 2x + 4 = x² + 5x
→ Add the like terms in the left side
∴ x² + 4x + 4 = x² + 5x
→ Subtract x² from both sides
∵ x² - x² + 4x + 4 = x² - x² + 5x
∴ 4x + 4 = 5x
→ Subtract 4x from both sides
∴ 4x - 4x + 4 = 5x - 4x
∴ 4 = x
∴ The value of x is 4
Answer:
a
The 95% confidence interval is 
b
The sample proportion is 
c
The critical value is 
d
The standard error is 
Step-by-step explanation:
From the question we are told that
The sample size is n = 200
The number of defective is k = 18
The null hypothesis is 
The alternative hypothesis is 
Generally the sample proportion is mathematically evaluated as

Given that the confidence level is 95% then the level of significance is mathematically evaluated as



Next we obtain the critical value of
from the normal distribution table, the value is

Generally the standard of error is mathematically represented as

substituting values


The margin of error is

=> 
=> 
The 95% confidence interval is mathematically represented as

=> 
=> 
Answer:
y = 3/4x + 19/2
Step-by-step explanation:
m = 3/4. point (-6,5)
Point slope form:
y-5=3/4(x- -6)
y -5 = 3/4x + 18/4. 18/4 = 9/2
Y = 3/4x + 9/2 + 5. 5 times 2 plus 9 over 2 = 19/2
y = 3/4x + 19/2
Answer:
(c) micrograms (µg)
Step-by-step explanation:
Answer:
is isosceles.
Step-by-step explanation:
Please have a look at the attached figure.
We are <u>given</u> the following things:


Let us try to find out
and
. After that we will compare them.
<u>Finding </u>
<u>:</u>
Side EG is a straight line so 
is sum of internal
and external 
<u>Finding </u>
<u>:</u>
<u>Property of external angle:</u> External angle in a triangle is equal to the sum of two opposite internal angles of a triangle.
i.e. external
= 

Comparing equations (1) and (2):
It can be clearly seen that:

The two angles of
are equal hence
is isosceles.