Answer:
a is 3x
b is 6(8y-5) and 6x8y-6x5
Step-by-step explanation:
first a is 3x
b is 6(8y-5) 6x8y-6x5
Answer:
The correct option is D
The graph of f is shifted 8 units down to create the graph of g.
Explanation:
Given f(x) = x
If the graph of this function is shifted 8 units down, we have
x - 8
This is the function f(x) - 8
Since g(x) = f(x) - 8, we conclude that the graph of f is shifted 8 units down to create the graph of g.
Answer:
>
Step-by-step explanation:
d>1/3
d is greater than 1/3
not much to it
Answer:
75.4 inches
Step-by-step explanation:
circumference = 2πr = 24π ≅ 75.4 inches
It's really more of a tubcake than a cupcake.
Answer:
![r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7Bn%28%5Csum%20xy%29-%28%5Csum%20x%29%28%5Csum%20y%29%7D%7B%5Csqrt%7B%5Bn%5Csum%20x%5E2%20-%28%5Csum%20x%29%5E2%5D%5Bn%5Csum%20y%5E2%20-%28%5Csum%20y%29%5E2%5D%7D%7D)
The value of r is always between 
And we have another measure related to the correlation coefficient called the R square and this value measures the % of variance explained between the two variables of interest, and for this case we have:

So then the best conclusion for this case would be:
c. the fraction of variation in weights explained by the least-squares regression line of weight on height is 0.64.
Step-by-step explanation:
For this case we know that the correlation between the height and weight of children aged 6 to 9 is found to be about r = 0.8. And we know that we use the height x of a child to predict the weight y of the child
We need to rememeber that the correlation is a measure of dispersion of the data and is given by this formula:
![r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7Bn%28%5Csum%20xy%29-%28%5Csum%20x%29%28%5Csum%20y%29%7D%7B%5Csqrt%7B%5Bn%5Csum%20x%5E2%20-%28%5Csum%20x%29%5E2%5D%5Bn%5Csum%20y%5E2%20-%28%5Csum%20y%29%5E2%5D%7D%7D)
The value of r is always between 
And we have another measure related to the correlation coefficient called the R square and this value measures the % of variance explained between the two variables of interest, and for this case we have:

So then the best conclusion for this case would be:
c. the fraction of variation in weights explained by the least-squares regression line of weight on height is 0.64.