Answer:
!!!
Step-by-step explanation:
w represents width
4w represents length
d represents diagonal
w2 + (4w)2 = d2
w2 + 16w2 = d2
17w2 = d2
±w√17 = d
The diagonal is the width times √17.
Answer:
x = 60°
y = 72°
z = 48°
Step-by-step explanation:
x = 180 - p = 180 - 120 = 60
Since y;z = 3:2 , 2y = 3z or z = 2y/3
Now, x + y + z = 180
60 + y + 2y/3 = 180 Multiply thru by 3 to remove the fraction
180 + 3y + 2y = 540
180 + 5y = 540
5y = 360
y = 72
z = 2(72)/3 = 48
Check: 60 + 72 + 48 = 180
<em>The</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>C</em>
<em>Please</em><em> </em><em>see</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>for</em><em> full</em><em> </em><em>solution</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
You're correct, the answer is C.
Given any function of the form

, then the derivative of y with respect to x (

) is written as:

In which

is any constant, this is called the power rule for differentiation.
For this example we have

, first lets get rid of the quotient and write the expression in the form

:

Now we can directly apply the rule stated at the beginning (in which

):

Note that whenever we differentiate a function, we simply "ignore" the constants (we take them out of the derivative).