Let,
f(x) = -2x+34
g(x) = (-x/3) - 10
h(x) = -|3x|
k(x) = (x-2)^2
This is a trial and error type of problem (aka "guess and check"). There are 24 combinations to try out for each problem, so it might take a while. It turns out that
g(h(k(f(15)))) = -6
f(k(g(h(8)))) = 2
So the order for part A should be: f, k, h, g
The order for part B should be: h, g, k f
note how I'm working from the right and moving left (working inside and moving out).
Here's proof of both claims
-----------------------------------------
Proof of Claim 1:
f(x) = -2x+34
f(15) = -2(15)+34
f(15) = 4
-----------------
k(x) = (x-2)^2
k(f(15)) = (f(15)-2)^2
k(f(15)) = (4-2)^2
k(f(15)) = 4
-----------------
h(x) = -|3x|
h(k(f(15))) = -|3*k(f(15))|
h(k(f(15))) = -|3*4|
h(k(f(15))) = -12
-----------------
g(x) = (-x/3) - 10
g(h(k(f(15))) ) = (-h(k(f(15))) /3) - 10
g(h(k(f(15))) ) = (-(-12) /3) - 10
g(h(k(f(15))) ) = -6
-----------------------------------------
Proof of Claim 2:
h(x) = -|3x|
h(8) = -|3*8|
h(8) = -24
---------------
g(x) = (-x/3) - 10
g(h(8)) = (-h(8)/3) - 10
g(h(8)) = (-(-24)/3) - 10
g(h(8)) = -2
---------------
k(x) = (x-2)^2
k(g(h(8))) = (g(h(8))-2)^2
k(g(h(8))) = (-2-2)^2
k(g(h(8))) = 16
---------------
f(x) = -2x+34
f(k(g(h(8))) ) = -2*(k(g(h(8))) )+34
f(k(g(h(8))) ) = -2*(16)+34
f(k(g(h(8))) ) = 2
she bought 10 pencils and 5 erasers
Let x represent the number of pencils and y represent the number of erasers.
Gabby wants to spend exactly $2.00 on pencils and erasers, hence:
0.15x - 0.1y = 2 (1)
Therefore x = 10 and y = 5
Therefore she bought 10 pencils and 5 erasers.
Find out more at: brainly.com/question/25035724
Answer:
1/2x-7
Step-by-step explanation:
Add 3/8x and 1/8x to get 4/8x which is the same as 1/2xThen add the integers: -2 + -5 = -7.
<h3>hope it helps you ~♥~</h3>
0.34 + x + 1.11 + 0.17 + 0.43 = 2.63
x + 2.05 = 2.63
x + 2.05 (-2.05) = 2.63 (-2.05)
x = 0.58
0.58 in fell in Day 2
hope this helps