Answer:
The probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:

The standard deviation of this sampling distribution of sample proportion is:

As the sample size is large, i.e. <em>n</em> = 492 > 30, the central limit theorem can be used to approximate the sampling distribution of sample proportion by the normal distribution.
The mean and standard deviation of the sampling distribution of sample proportion are:

Compute the probability that the sample proportion will differ from the population proportion by greater than 0.03 as follows:

![=P(|Z|>2.61)\\\\=1-P(|Z|\leq 2.61)\\\\=1-P(-2.61\leq Z\leq 2.61)\\\\=1-[P(Z\leq 2.61)-P(Z\leq -2.61)]\\\\=1-0.9955+0.0045\\\\=0.0090](https://tex.z-dn.net/?f=%3DP%28%7CZ%7C%3E2.61%29%5C%5C%5C%5C%3D1-P%28%7CZ%7C%5Cleq%202.61%29%5C%5C%5C%5C%3D1-P%28-2.61%5Cleq%20Z%5Cleq%202.61%29%5C%5C%5C%5C%3D1-%5BP%28Z%5Cleq%202.61%29-P%28Z%5Cleq%20-2.61%29%5D%5C%5C%5C%5C%3D1-0.9955%2B0.0045%5C%5C%5C%5C%3D0.0090)
Thus, the probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.
Answer:
-3
Step-by-step explanation:
This is because your questions is in an y=mx+b form therefore b is the y-intercept and in this equation -3 would be b therefore that the is the y-intercept
<h3>
Answer: 4/9</h3>
==============================================
Work Shown:

The idea is that when we subtract 10x and x, the infinite decimal pattern (the 4s that go on forever) will cancel. That leads to 9x = 4 which solves to x = 4/9
Original price of video game minus the sale price (-.75d) = the percent of original price Adam will pay (.25d)
Answer:

For the interpretation we consider a value for d small is is between 0-0.2, medium if is between 0.2-0.8 and large if is higher than 0.8.
And on this case 1.713>0.8 so we have a large effect size
This value of d=1.713 are telling to us that the two groups differ by 1.713 standard deviation and we will have a significant difference between the two means.
Step-by-step explanation:
Previous concepts
The Effect size is a "quantitative measure of the magnitude of the experimenter effect. "
The Cohen's d effect size is given by the following formula:

Solution to the problem
And for this case we can assume:
the mean for females
the mean for males
represent the deviations for both groups
And if we replace we got:

For the interpretation we consider a value for d small is is between 0-0.2, medium if is between 0.2-0.8 and large if is higher than 0.8.
And on this case 1.713>0.8 so we have a large effect size
This value of d=1.713 are telling to us that the two groups differ by 1.713 standard deviation and we will have a significant difference between the two means.