Answer:
Input:
14 x^2 + 57 x - 27
Plots:
Geometric figure:
parabola
Alternate forms:
(7 x - 3) (2 x + 9)
x (14 x + 57) - 27
14 (x + 57/28)^2 - 4761/56
Roots:
x = -9/2
x = 3/7
Polynomial discriminant:
Δ = 4761
Properties as a real function:
Domain
R (all real numbers)
Range
{y element R : y>=-4761/56}
Derivative:
d/dx(14 x^2 + 57 x - 27) = 28 x + 57
Indefinite integral:
integral(-27 + 57 x + 14 x^2) dx = (14 x^3)/3 + (57 x^2)/2 - 27 x + constant
Global minimum:
min{14 x^2 + 57 x - 27} = -4761/56 at x = -57/28
Definite integral:
integral_(-9/2)^(3/7) (-27 + 57 x + 14 x^2) dx = -109503/392≈-279.344
Definite integral area below the axis between the smallest and largest real roots:
integral_(-9/2)^(3/7) (-27 + 57 x + 14 x^2) θ(27 - 57 x - 14 x^2) dx = -109503/392≈-279.344
Step-by-step explanation:
Answer:
The answer is 32/75
Step-by-step explanation:
Hope this helps,
have a great day,
Please subscribe to Random Topics Trending on youtub
Answer:
n > -15
Step-by-step explanation:
15 + n
15 + -16 (at least)
n = -1
Answer:
Hours of work= 3.5
Step-by-step explanation:
Giving the following information:
Allowance= $5
Hourly pay= $7.5
Desired profit= $31
<u>To calculate the number of hours to work, we need to use the following formula:</u>
Hours of work= shoveling pay / hourly pay
Hours of work= (31 - 5)/7.5
Hours of work= 26/7.5
Hours of work= 3.5
Answer:
220.5 in³
Step-by-step explanation:
<u>Volume = L×W×H</u>
Volume = 10.5 in × 7 in × 3 in
Volume = 220.5 in³