1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
10

What is the slope of this question 3x-2y=-16

Mathematics
2 answers:
nata0808 [166]3 years ago
5 0
the \ slope \ intercept \ form \ is : \\  \\ y= mx +b \\ \\ 3x-2y=-16 \\ \\-2y = -3x-16 \ \ /: (-2)\\ \\ y = \frac{-3}{-2}x-\frac{16}{(-2)} \\ \\y = \frac{3}{2}x + 8 \\ \\ \\Answer : \ m = \frac{3}{2}
Lena [83]3 years ago
4 0
3/2 because using the formula y = mx + b where m = slope Then you get 3/2
You might be interested in
What is the slope of line LM given L(9, -2) and M(3, -5)?
jasenka [17]

Answer:

1/2

Step-by-step explanation:

(y2-y1)/(x2-x1) is the equation for finding slope with two given points

-5-(-2) over 3-9 equals

-3/-6=-1/-2=1/2

7 0
4 years ago
I need help on this one
Tanzania [10]
What is it? I will help. :)
4 0
3 years ago
Consider the function ​f(x)equalscosine left parenthesis x squared right parenthesis. a. Differentiate the Taylor series about 0
dybincka [34]

I suppose you mean

f(x)=\cos(x^2)

Recall that

\cos x=\displaystyle\sum_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}

which converges everywhere. Then by substitution,

\cos(x^2)=\displaystyle\sum_{n=0}^\infty(-1)^n\frac{(x^2)^{2n}}{(2n)!}=\sum_{n=0}^\infty(-1)^n\frac{x^{4n}}{(2n)!}

which also converges everywhere (and we can confirm this via the ratio test, for instance).

a. Differentiating the Taylor series gives

f'(x)=\displaystyle4\sum_{n=1}^\infty(-1)^n\frac{nx^{4n-1}}{(2n)!}

(starting at n=1 because the summand is 0 when n=0)

b. Naturally, the differentiated series represents

f'(x)=-2x\sin(x^2)

To see this, recalling the series for \sin x, we know

\sin(x^2)=\displaystyle\sum_{n=0}^\infty(-1)^{n-1}\frac{x^{4n+2}}{(2n+1)!}

Multiplying by -2x gives

-x\sin(x^2)=\displaystyle2x\sum_{n=0}^\infty(-1)^n\frac{x^{4n}}{(2n+1)!}

and from here,

-2x\sin(x^2)=\displaystyle 2x\sum_{n=0}^\infty(-1)^n\frac{2nx^{4n}}{(2n)(2n+1)!}

-2x\sin(x^2)=\displaystyle 4x\sum_{n=0}^\infty(-1)^n\frac{nx^{4n}}{(2n)!}=f'(x)

c. This series also converges everywhere. By the ratio test, the series converges if

\displaystyle\lim_{n\to\infty}\left|\frac{(-1)^{n+1}\frac{(n+1)x^{4(n+1)}}{(2(n+1))!}}{(-1)^n\frac{nx^{4n}}{(2n)!}}\right|=|x|\lim_{n\to\infty}\frac{\frac{n+1}{(2n+2)!}}{\frac n{(2n)!}}=|x|\lim_{n\to\infty}\frac{n+1}{n(2n+2)(2n+1)}

The limit is 0, so any choice of x satisfies the convergence condition.

3 0
4 years ago
3X-4 over 14 equals 9 over 10 solve for x
Maru [420]

Answer:

3x-4/14=9/10

You change the subtraction to addition

3x+4/14=9/10

Then you change the fractions to decimals

Step-by-step explanation:

8 0
3 years ago
I need help solving this problem
BARSIC [14]
You add the base and to sides which will equal 10 5/12
8 0
3 years ago
Read 2 more answers
Other questions:
  • How can i get the number 4 using 6 number 3's?
    8·1 answer
  • PLEASE HELP ME I need it ASAP
    8·1 answer
  • How to convert improper fractions to a mixed numeral
    5·2 answers
  • Solve the differential equation by variation of parameters, subject to the initial conditions y(0) = 1, y'(0) = 0. 36y'' − y = x
    8·1 answer
  • A sample of 28 elements is selected to estimate a 95% confidence interval for the variance of the population. The chi-square val
    13·1 answer
  • Can someone help with 2B, please
    9·1 answer
  • A decimal that goes on forever and has a pattern of repeating digits that repeat forever
    5·1 answer
  • Que dimensiones de superficie mínimas tendría que tener la platea donde se armara el tanque australiano que tiene un diámetro de
    7·1 answer
  • Logan is going to invest $61,000 and leave it in an account for 20 years. Assuming
    15·2 answers
  • PLEASE HELP ME!
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!