Answer:
10. 3/5
12. 5/6
14. 12/17
15. 2 , 5
18.7
20. 21/22
22. 15
24. 9
26.11,21
Step-by-step explanation:
The ladder, leaning against the building, forms a right triangle with height "a" being the distance from the ground to the window, and hypotenuse "c" being the length of the ladder.
Because it's a right triangle, we can use trigonometric ratios to find the angles we're missing.
For part A), to solve for the angle between the base of the ladder and the ground, you'll want to use sine, because we know the lengths of the opposite side and the hypotenuse.
Sin(x) = a/c , solve for angle x in degrees or radians.
For part B), finding the angle between the top of the ladder and the building, remember that the sum of the angles in a triangle is 180 degrees, or pi radians, depending on which unit your teacher prefers.
Assuming degrees, we can say that angle y = 180-90-x. You are simply subtracting the two known angles to find the third.
For part C) use the Pythagorean theorem. You're looking for the length of the base, "b". Recall:
a^2 + b^2 = c^2
Plug in the known values, and solve for b.
Angles p and w are on opposite sides of the transversal, so are "opposite." The are between the parallel lines, so are "interior."
The appropriate selection is ...
... C. alternate interior angles
Answer:
No
Step-by-step explanation:
The second and third figures are translations of each other. The first figure appears to be a reflection of the second, not a translation. Hence the first and third figures are not translations of each other.
__
If an image is translated, all of the pre-image line segments are parallel to the image line segments. That is not the case for the first and third figures, in which the top line segments go in different directions.
For part 8-71,
a) 2=105
b) 2=55
c) 2=53
d)2=160