The way calculate the volume is l*w*h, 3 times 5 times 7 is 105
Answer: D. 105 km^3
9514 1404 393
Answer:
- area 36 ft²
- perimeter 30 ft
Step-by-step explanation:
The area can be decomposed into a rectangle and a trapezoid.
The rectangle is 2' by 5', so has area ...
A = LW
A = (5 ft)(2 ft) = 10 ft²
The trapezoid has bases 8 ft and 5 ft, and height 4 ft, so its area is ...
A = 1/2(b1 +b2)h
A = 1/2(8 ft +5 ft)(4 ft) = 26 ft²
Then the total area of the figure is ...
total area = 10 ft² +26 ft² = 36 ft²
__
The slant side of the trapezoid is the hypotenuse of a triangle with sides 3 and 4. The Pythagorean theorem tells us its length is ...
c = √(a² +b²) = √(3² +4²) = √25 = 5
The perimeter of the figure is the sum of the side lengths. Working clockwise from the top, that sum is ...
P = 5 + 4 + 2 + 2 + 5 + 2 + 5 + 5 = 30 . . . feet
The perimeter of the figure is 30 feet.
If you know your derivative rules, then
d/d<em>x</em> [1/<em>x</em>] = -1/<em>x</em> ²
so that when <em>x</em> = 6, the derivative has a value of -1/36.
If you have to use the definition of the derivative, then
d/d<em>x</em> [1/<em>x</em>] = lim {<em>h</em> → 0} (1/(<em>x</em> + <em>h</em>) - 1/<em>x</em>) / <em>h</em>
… = lim {<em>h</em> → 0} (<em>x</em> - (<em>x</em> + <em>h</em>)) / (<em>hx</em> (<em>x</em> + <em>h</em>))
… = lim {<em>h</em> → 0} (-<em>h</em>) / (<em>hx</em> (<em>x</em> + <em>h</em>))
… = lim {<em>h</em> → 0} (-1) / (<em>x</em> (<em>x</em> + <em>h</em>))
… = -1/<em>x</em> ²
and at <em>x</em> = 6, you again get -1/36.
Alternatively, use the definition of the derivative at a point:
d/d<em>x</em> [1/<em>x</em>] (6) = lim {<em>x</em> → 6} (1/<em>x</em> - 1/6) / (<em>x</em> - 6)
… = lim {<em>x</em> → 6} ((6 - <em>x</em>) / (6<em>x</em>)) / (<em>x</em> - 6)
… = lim {<em>x</em> → 6} -(<em>x</em> - 6) / (6<em>x</em> (<em>x</em> - 6))
… = lim {<em>x</em> → 6} (-1) / (6<em>x</em>)
… = -1/36
Answer:
f
Step-by-step explanation:
f