1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
4 years ago
5

Solve by factoring:4x² - 8x=0​

Mathematics
1 answer:
AnnyKZ [126]4 years ago
5 0

Answer:

Step-by-step explanation:

4x² - 8x= 0​

4x(x -2) = 0

: 4x = 0 or x - 2 = 0

4x = 0

Dividing by 4

x = 0/4

x = 0

And

x - 2 = 0

x = 2

You might be interested in
Suppose the number of children in a household has a binomial distribution with parameters n=12n=12 and p=50p=50%. Find the proba
nadya68 [22]

Answer:

a) 20.95% probability of a household having 2 or 5 children.

b) 7.29% probability of a household having 3 or fewer children.

c) 19.37% probability of a household having 8 or more children.

d) 19.37% probability of a household having fewer than 5 children.

e) 92.71% probability of a household having more than 3 children.

Step-by-step explanation:

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

In this problem, we have that:

n = 12, p = 0.5

(a) 2 or 5 children

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 5) = C_{12,5}.(0.5)^{5}.(0.5)^{7} = 0.1934

p = P(X = 2) + P(X = 5) = 0.0161 + 0.1934 = 0.2095

20.95% probability of a household having 2 or 5 children.

(b) 3 or fewer children

P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.5)^{0}.(0.5)^{12} = 0.0002

P(X = 1) = C_{12,1}.(0.5)^{1}.(0.5)^{11} = 0.0029

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.0537

P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0002 + 0.0029 + 0.0161 + 0.0537 = 0.0729

7.29% probability of a household having 3 or fewer children.

(c) 8 or more children

P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 8) = C_{12,8}.(0.5)^{8}.(0.5)^{4} = 0.1208

P(X = 9) = C_{12,9}.(0.5)^{9}.(0.5)^{3} = 0.0537

P(X = 10) = C_{12,10}.(0.5)^{10}.(0.5)^{2} = 0.0161

P(X = 11) = C_{12,11}.(0.5)^{11}.(0.5)^{1} = 0.0029

P(X = 12) = C_{12,12}.(0.5)^{12}.(0.5)^{0} = 0.0002

P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) = 0.1208 + 0.0537 + 0.0161 + 0.0029 + 0.0002 = 0.1937

19.37% probability of a household having 8 or more children.

(d) fewer than 5 children

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.5)^{0}.(0.5)^{12} = 0.0002

P(X = 1) = C_{12,1}.(0.5)^{1}.(0.5)^{11} = 0.0029

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.0537

P(X = 4) = C_{12,4}.(0.5)^{4}.(0.5)^{8} = 0.1208

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0002 + 0.0029 + 0.0161 + 0.0537 + 0.1208 = 0.1937

19.37% probability of a household having fewer than 5 children.

(e) more than 3 children

Either a household has 3 or fewer children, or it has more than 3. The sum of these probabilities is 100%.

From b)

7.29% probability of a household having 3 or fewer children.

p + 7.29 = 100

p = 92.71

92.71% probability of a household having more than 3 children.

5 0
3 years ago
Help me out here???? I need help!!​
wel
Answer: x would equal 30
7 0
3 years ago
What is the equation of the given line in the point slope form.
zzz [600]

b. \: y - 0 =  - 1(x  - 8)

7 0
3 years ago
A corporate team-building event costs $19plus an additional $1 per attendee. How many attendees can there be, at most, if the bu
Mars2501 [29]

Answer:

There can be at most 12 attendees in a corporate team-building event.

Step-by-step explanation:

Let x denotes number of attendees in a corporate team-building event.

Fixed cost = $19

Cost charged per attendee = $1

Budget for the corporate team-building event = $31

Therefore,

19+1(x)\leq 31\\19+x\leq 31\\x\leq 31-19\\x\leq 12

So, there can be at most 12 attendees in a corporate team-building event.

8 0
3 years ago
I need help with slope
forsale [732]
The slope of this line is 4/5 
8 0
4 years ago
Read 2 more answers
Other questions:
  • Trisha is planning her 13th birthday party. She has to choose a theme from these five options: the 70s, gothic, Arabian nights,
    14·2 answers
  • DeAnna has 4 quarters 3 dimes and 3 nickels in her purse. she reaches into her purse and randomly grabs two coins one at a time.
    7·2 answers
  • The slope-intercept form of the equation of a line that passes through point (–3, 8) is y = –2/3x 6. what is the point-slope for
    9·1 answer
  • Someone please help
    5·1 answer
  • |4-24x|=52 absolute value
    5·1 answer
  • 1 plus 1<br> Plus 4 plus 4444 plus 1928 plus 63626
    7·2 answers
  • As an airplane rises, the outside temperature drops 3.6 degrees Fahrenheit for each 1000 feat of elevation gain. Suppose the out
    8·1 answer
  • 78 - 24 : (14 - 6) X 2
    6·2 answers
  • Laci wrote an integer. The opposite of Laci’s integer is -35. (6.2B)
    9·1 answer
  • The scale on a map is 1 inch = 14 miles. The measurement between two cities on the map is 7 inches. What is the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!