Answer:
The magnitude of the magnetic field made by current in the wire is 3.064 x 10⁻⁶ T.
Explanation:
Given;
length of the straight wire, L = 0.56 m
conventional current, I = 0.4 A
distance of magnetic field from the wire, r = 2.6 cm = 0.026 m
To determine magnitude of magnetic field made by current in the wire, we will apply Bio-Savart Law;

Therefore, the magnitude of the magnetic field made by current in the wire is 3.064 x 10⁻⁶ T.
Answer:
Option A
Explanation:
Mechanical waves requires some medium to travel through. They travel faster in the dense medium as compared to a free medium.
The speed of a mechanical wave is fastest in the solid medium and the slowest in the gaseous medium. Hence, as the wave traverses from gaseous medium to the solid medium, its speed increases.
Thus, option A is correct
Answer:

Explanation:
From the question we are told that:
Speed of light 
Generally the equation for Average Speed is mathematically given by

Where
d=Distance between the Earth and the sun

Therefore



Since m and n is given in the form of

Therefore


Answer:
are sure this is a question
Answer:
a) f=0.1 Hz ; b) T=10s
c)λ= 36m
d)v=3.6m/s
e)amplitude, cannot be determined
Explanation:
Complete question is:
Determine, if possible, the wave's (a) frequency, (b) period, (c) wavelength, (d) speed, and (e) amplitude.
Given:
number of wave crests 'n'= 5
pass in a time't' 54.0s
distance between two successive crests 'd'= 36m
a) Frequency of the waves 'f' can be determined by dividing number of wave crests with time, so we have
f=n/t
f= 5/ 54 => 0.1Hz
b)The time period of wave 'T' is the reciprocal of the frequency
therefore,
T=1/f
T=1/0.1
T=10 sec.
c)wavelength'λ' is the distance between two successive crests i.e 36m
Therefore, λ= 36m
d) speed of the wave 'v' can be determined by the product of frequency and wavelength
v= fλ => 0.1 x 36
v=3.6m/s
e) For amplitude, no data is given in this question. So, it cannot be determined.