1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
6

A 10 Newton effort force is required to lift a 10 kg box just off the ground. What is the effort required to lift the box off th

e ground using a 3m long lever? [The fulcrum is placed 0.5m from the box.]
Physics
2 answers:
Zanzabum3 years ago
6 0

Answer:

effort required to  lift the box off the ground using a 3m long lever=2N

Explanation:

In this question we have given

force required,F=10N

mass of box.m=10kg

length of lever, l=3m

distance between fulcrum and box,d=.5m

effort required to  lift the box off the ground using a 3m long lever=?

Here,

Effort required to  lift the box off the ground using a 3m long lever \times (3m-0.5m) =F \times 0.5m

Effort required to  lift the box off the ground using a 3m long lever \times (3m-0.5m) =10N \times 0.5m

Effort=\frac{10\times 0.5}{3-0.5}

Effort=2N

Karo-lina-s [1.5K]3 years ago
5 0

2.0 N is the answer, I hope this helps :D




You might be interested in
Suppose a small planet is discovered that is 16 times as far from the Sun as the Earth's distance is from the Sun. Use Kepler's
mamaluj [8]

Answer:

23376 days

Explanation:

The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

T^2\alpha R^3\\T^2=kR^3.......................(1)

where k is a constant.

From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

\frac{T^2}{R^3}=k.......................(2)

Let the orbital period of the earth be T_e and its mean distance of from the sun be R_e.

Also let the orbital period of the planet be T_p and its mean distance from the sun be R_p.

Equation (2) therefore implies the following;

\frac{T_e^2}{R_e^3}=\frac{T_p^2}{R_p^3}....................(3)

We make the period of the planet T_p the subject of formula as follows;

T_p^2=\frac{T_e^2R_p^3}{R_e^3}\\T_p=\sqrt{\frac{T_e^2R_p^3}{R_e^3}\\}................(4)

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

R_p=16R_e...............(5)

Substituting equation (5) into (4), we obtain the following;

T_p=\sqrt{\frac{T_e^2(16R_e)^3}{(R_e^3}\\}\\T_p=\sqrt{\frac{T_e^24096R_e^3}{R_e^3}\\}

R_e^3 cancels out and we are left with the following;

T_p=\sqrt{4096T_e^2}\\T_p=64T_e..............(6)

Recall that the orbital period of the earth is about 365.25 days, hence;

T_p=64*365.25\\T_p=23376days

4 0
3 years ago
How old is the universe
Virty [35]
Roughly 13.8 billion years old according to science
5 0
3 years ago
Read 2 more answers
How do the positions of the sun and moon affect what people do?
Verdich [7]

-- The position of the sun was originally the primary influence in determining
when people went to sleep and when they woke up.  Although it no longer
directly influences us, that pattern is so deeply ingrained in our make-up
that our behavior still largely coincides with the positions of the sun.

-- The position of the Moon was originally the primary influence in determining
the cycle of human female physiology.  Although it no longer directly influences
us, that pattern is so deeply ingrained in human make-up that the female cycle
still largely coincides with the positions of the Moon.



6 0
3 years ago
A carriage of 20 kg is pulled with a force of 35 N. How far the carriage will go
Gennadij [26K]

Answer:

2.71 m

Explanation:

Force is the product of mass and acceleration

F=m*a

Work done is the product of force and distance

Work done=F*d

In this case;

F= 35 N

Work done = 95 J

95 =35 * d

95 /35 = d

2.71 m= d

6 0
3 years ago
Why skies are blue but not other colours​
wolverine [178]

Answer:

The Short Answer: Sunlight reaches Earth's atmosphere and is scattered in all directions by all the gases and particles in the air. Blue light is scattered more than the other colors because it travels as shorter, smaller waves. This is why we see a blue sky most of the time.

Explanation:

4 0
3 years ago
Other questions:
  • An airplane flies at an altitude of 36,000 km and is traveling at a velocity of 300.0 km/h to the north, but the tailwind is 20.
    14·2 answers
  • What is the relationship between environmental science and public policymakers?
    7·1 answer
  • A Porter carries a 25 kg suitcase a distance of 1 km. Explain why the Porter does no work
    14·1 answer
  • A scientist conducting a field investigation records measurements of very low pressure and high relative humidity at the top of
    12·1 answer
  • The state of strain at a point is plane strain with εx = ε0, εy = –2ε0, γxy = 0, where ε0 is a positive constant. What is the no
    14·1 answer
  • How fast would you be going (in kmh) if you had a ship that accelerated at a constant 1g for 24 hours?
    7·1 answer
  • Joint replacement are often made of the element titanium. Which type of matter is titanium
    11·2 answers
  • Which of the following have derived units?<br> A. 56 kg<br> B. 2.5 m<br> C. 87 m/s²<br> D. 60 N
    6·2 answers
  • List of places in our bodies where HIV is present
    8·1 answer
  • A wire 25.0cm long lies along the z-axis and carries a current of 9.00A in the positive +z-direction. The magnetic field is unif
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!