Answer:
roots (1,0) (3,) the vertical intercept is (0,-12)
Step-by-step explanation:
Answer:
x= 7
Step-by-step explanation:
1st step: Multiply the factor (outside number) with the numbers and variable(s) in the box. This results in 2(x-3) = 2x-6
2nd Step: continue the rest of the equation since there are no more brackets left so 2x-6-12=-4
3rd Step: send -12 to the other side of the equation (side changes sign changes) so it will become 2x-6=-4+12 (You are actually supposed to make the variable alone on one side of the equation so that you would be able to calculate its value)
4th step: 2x-6=8 ---> send -6 to the other side as well which will then result in 2x=14
5th step: since 2 is being multiplied by x, when you send it to the other side (to make x alone) you will divide 14 by 2 ( sign of 2 changes from multiplication to division)
Final Step: x=7
The situation can be modeled by a geometric sequence with an initial term of 284. The student population will be 104% of the prior year, so the common ratio is 1.04.
Let \displaystyle PP be the student population and \displaystyle nn be the number of years after 2013. Using the explicit formula for a geometric sequence we get
{P}_{n} =284\cdot {1.04}^{n}P
n
=284⋅1.04
n
We can find the number of years since 2013 by subtracting.
\displaystyle 2020 - 2013=72020−2013=7
We are looking for the population after 7 years. We can substitute 7 for \displaystyle nn to estimate the population in 2020.
\displaystyle {P}_{7}=284\cdot {1.04}^{7}\approx 374P
7
=284⋅1.04
7
≈374
The student population will be about 374 in 2020.
8/10 = 4/5 would be the answer