Answer:
The 99% confidence interval for the true mean checking account balance for local customers is ($439.29, $888.99).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 14 - 1 = 13
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 13 degrees of freedom(y-axis) and a confidence level of
. So we have T = 3.0123
The margin of error is:
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 664.14 - 224.85 = $439.29
The upper end of the interval is the sample mean added to M. So it is 664.14 + 224.85 = $888.99.
The 99% confidence interval for the true mean checking account balance for local customers is ($439.29, $888.99).
We have that
the correct expression is
y=2<span>^</span>(x+3)
using a graph tool
see the attached figure
the answer is the option C
Answer:
Step-by-step explanation:
<u>Arc length formula:</u>
<u>Substitute values:</u>
- s = 2*3.14*15(80/360) = 20.93 in
Y = 3x^2 - 3x - 6 {the x^2 (x squared) makes it a quadratic formula, and I'm assuming this is what you meant...}
This is derived from:
y = ax^2 + bx + c
So, by using the 'sum and product' rule:
a × c = 3 × (-6) = -18
b = -3
Now, we find the 'sum' and the 'product' of these two numbers, where b is the 'sum' and a × c is the 'product':
The two numbers are: -6 and 3
Proof:
-6 × 3 = -18 {product}
-6 + 3 = -3 {sum}
Now, since a > 1, we divide a from the results
-6/a = -6/3 = -2
3/a = 3/3 = 1
We then implement these numbers into our equation:
(x - 2) × (x + 1) = 0 {derived from 3x^2 - 3x - 6 = 0}
To find x, we make x the subject of 0:
x - 2 = 0
OR
x + 1 = 0
Therefore:
x = 2
OR
x = -1
So the x-intercepts of the quadratic formula (or solutions to equation 3x^2 - 3x -6 = 0, to put it into your words) are 2 and -1.
We can check this by substituting the values for x:
Let's start with x = 2:
y = 3(2)^2 - 3(2) - 6
= 3(4) - 6 - 6
= 12 - 6 - 6
= 0 {so when x = 2, y = 0, which is correct}
For when x = -1:
y = 3(-1)^2 - 3(-1) - 6
= 3(1) + 3 - 6
= 3 + 3 - 6
= 0 {so when x = -1, y = 0, which is correct}