Answer:
The distance PR is 21.6 Km
Step-by-step explanation:
Please find the attached document for explanation.
Also, I applied Cosine rule to determine the distance PR, since i have an angle (Q) in between two given sides of the triangle.
Respuesta:
El punto A(-3, 3) pertenece a la recta.
El punto B(0, -15) no pertence a la recta.
Explicación paso a paso:
Consideremos la siguiente ecuación de la recta en forma estandar.
-4x - y + 15 = 0
Para verificar si los puntos A y B pertencen a la recta, primero la transformaremos a la forma explícita.
-4x - y + 15 = 0
-4x + 15 = y
y = -4x + 15
El punto A(-3, 3), tiene coordenada x -3 y coordenada y 3. Reemplazaremos x en la ecuación de la recta y veremos si obtenemos el mismo valor de y.
y = -4(-3) + 15 = 3
El punto A(-3, 3) pertenece a la recta.
El punto B(0, -15), tiene coordenada x 0 y coordenada y -15. Reemplazaremos x en la ecuación de la recta y veremos si obtenemos el mismo valor de y.
y = -4(0) + 15 = 15
El punto B(0, -15) no pertence a la recta.
The value of L4 and R4 over [0,7] for the function f(x) = 6x² will be 2[2√0 + 2√2 + 2√4 + 2√6] and 2[2√2 + 2√4 + 2√6 + 2√8] respectively.
<h3>What is a function?</h3>
It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.
It is given that the function is,
I'm assuming that you mean the left and right Riemann sums with four equal subintervals when you refer to L4 and R4.
If so, then Δx = (8-0)/4 = 2, and f(x) = 2√x.
L4 = f(0)Δx + f(2)Δx + f(4)Δx + f(6)Δx
L4 =2[2√0 + 2√2 + 2√4 + 2√6]
R4 = 2[2√2 + 2√4 + 2√6 + 2√8]
Thus, the value of L4 and R4 over [0,7] for the function f(x) = 6x² will be 2[2√0 + 2√2 + 2√4 + 2√6] and 2[2√2 + 2√4 + 2√6 + 2√8] respectively.
Learn more about the function here:
brainly.com/question/5245372
#SPJ2
Answer:
i got 36:8, 54:12, and 72:16
Step-by-step explanation: