Answer:
Step-by-step explanation:
Answer:
3rd Option is correct.
Step-by-step explanation:
Given Equation:
x² - 16x + 12 = 0
First We need to find solution of the given equation.
x² - 16x + 12 = 0
here, a = 1 , b = -16 & c = 12
Now,
Option 1).
( x - 8 )² = 144
x - 8 = ±√144
x - 8 = ±12
x = 8 + 12 = 20 and x = 8 - 12 = -4
Thus, This is not correct Option.
Option 2).
( x - 4 )² = 4
x - 4 = ±√4
x - 4 = ±2
x = 4 + 2 = 6 and x = 4 - 2 = 2
Thus, This is not correct Option.
Option 3).
( x - 8 )² = 52
x - 8 = ±√52
x - 8 = ±2√13
x = 8 + 2√13 and x = 8 - 2√13
Thus, This is correct Option.
Option 4).
( x - 4 )² = 16
x - 4 = ±√116
x - 4 = ±4
x = 4 + 4 = 8 and x = 4 - 4 = 0
Thus, This is not correct Option.
Therefore, 3rd Option is correct.
Answer:
<u>Volume</u>
For the rectangle, h = 3cm, l = 8cm, w = 6cm
V = length x width x height
V = 8cm x 6cm x 3cm
V = 144cm^3
For the semi circle, we need to find the radius. The radius is width/2, so 6cm/2 = 3cm. r = 3cm, = 3.14
V = radius^2 x height x
V = 3cm^2 x 3cm x 3.14
V = 84.8 cm^3/2 (because the cylinder needs to be divided to form a semi-circle)
V= 42.4cm^3 (there are two cylinders though so we will multiply this by 2 in the total volume)
Total volume:
V = 144cm^3 + 42.4cm^3(2)
V = 186.4cm^3
<u>Surface Area</u>
Rectangular prism:
A = 2[w(l) + h(l) + h(w)]
A = 2[6cm(8cm) + 3cm(8cm) + 3cm(6cm)]
A = 180cm^2
But there are two sides that are covered by the semi-circular prisms, so we will have to calculate those sides and remove them.
A = l x w
A = 6cm x 3cm
A = 18cm^2(2) (2 being the two faces)
A = 36cm^2
A = 180cm^2 - 36cm^2
A = 144cm^2 (the area of the rectangle)
Semi-circular prism:
A = 2rh + 2r^2
Earlier, we found out that the radius of the circle is 3cm, so we will plug that in.
A = 2(3.14)(3cm)(3cm) + 2(3.14)(3cm)^2
A = 113.09cm^2
Total surface area:
A = 144cm^2 + 133.09cm^2
A = 277.09cm^2
Therefore the total volume of the prism is 186.4cm^3 and the total surface area is 277.09cm^2.
Answer:
Please delete this I accidentally did this
Step-by-step explanation:
X=area of Sahara.
y=area of the Gobi Desert.
We suggest this system equations:
x+y=4000000
x=7y
solve by susbstitution method.
(7y)+y=4,000,000
8y=4,000,000
y=4,000,000 / 8=500,000
x=7y
x=7(500,000)=3,500,000
The area of Sahara=3,500,00 miles².
The area of the Gobi Desert=500,000 miles²
To check:
Te sum of their areas is : 3,500,000 miles²+500,000 miles²=4,000,000 miles²
Te area of sahara (3,500,000 miles²) is 7 times the area of the Gobi Desert (7*500,000 miles²=3,500,000 miles²).