Answer: A) .1587
Step-by-step explanation:
Given : The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.30 ounces and a standard deviation of 0.20 ounce.
i.e.
and 
Let x denotes the amount of soda in any can.
Every can that has more than 12.50 ounces of soda poured into it must go through a special cleaning process before it can be sold.
Then, the probability that a randomly selected can will need to go through the mentioned process = probability that a randomly selected can has more than 12.50 ounces of soda poured into it =
![P(x>12.50)=1-P(x\leq12.50)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{12.50-12.30}{0.20})\\\\=1-P(z\leq1)\ \ [\because z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.8413\ \ \ [\text{By z-table}]\\\\=0.1587](https://tex.z-dn.net/?f=P%28x%3E12.50%29%3D1-P%28x%5Cleq12.50%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B12.50-12.30%7D%7B0.20%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq1%29%5C%20%5C%20%5B%5Cbecause%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.8413%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%5C%5C%5C%3D0.1587)
Hence, the required probability= A) 0.1587
Answer: 6 x 10^12
Step-by-step explanation:
Move the decimal to the left so there is one non-zero digit number left of the decimal point. This will be the exponent placed on 10
Answer:
0.132
Step-by-step explanation:
4.4%*3=0.132
Using the side of the square find the area:
Area = 30^2 = 900 square feet.
The rectangles area is the same, 900 square feet.
Let the width = X
The length would be 2X + 70
Area = length x width
X * 2x+ 70 = 900
This expands to 2x^2 * 70x = 900
Use the quadratic formula to solve for x:
-70 +/- sqrt(70^2-4*2(-900))/2*2
X = 10
Width = x = 10 feet
Length = 2x + 70 = 90 feet