Answer:
See the explanation
Explanation:
Answer 1.
As given that in F1 all are short and white then it can be said according to Mendel's law that short and white are dominant over tall and purple.
Let S for short s for tall and W for white and w for purple allele.
So the genotype of short purple will be Ssww or SSww. So In first case Ssww self crossed then resultant offsprings will be,
................ Sw .................... sw
Sw ........ SSww ............. Ssww
sw ........ Ssww .............. ssww (tall and purple)
So from this 1/4 will be tall and purple while 3/4 will be short and purple.
In second case SSww only short purple progeny will appear.
Answer 2.
2. a) The female progeny will not show any trait because there are two X chromosome in females , so female offspring can be carrier but not show any trait in case of X- linked trait.
2. b) Half of male offsprings show trait because X is inherited from mother. So the chance of having X-linked recessive allele is 1/2.
2. c) The chance of having X linked affect allele in daughter is 1/2. So the chance of inheriting that X to son will be 1/2 so in total there is chance of 1/4 that son will be affected.
2. d) the chance of first child show this trait will be 1/4 in case of male offspring while 0 in case of female offspring.
Hope this helps!
Answer:
The ring of fire is an area around the pacific ocean where there is a lot of volcanic activity
Explanation:
Dendrites branch from the body and axons send the message
Answer:
Concentration gradient
Explanation:
Concentration gradient of the ions across the membrane generates the membrane resting potential.
Concentration gradient means that there is unequal distribution of the ions on different sides of membrane. For example, the concentration of K ions is much higher within the cell then out of the cell. Opposite is with the Na ions. When ions move from the area of their higher concentration to the are with the lower concentration, we say they move down the gradient or diffuse (no energy required). On the other hand, movement of ions against their gradient means that this process requires energy and involves protein pumps.