1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
3 years ago
9

Alejandro was asked to solve a system of linear equations by using the substitution method. What is the error in his work below?

Step 1: 4y + x = 15 −9x + 5y = 20 Step 2: 4y + x = 15 x = 15 − 4y Step 3: 4y + x = 15 4y + (15 − 4y) = 15 4y + 15 − 4y = 15 15 = 15 There are infinitely many solutions to the system of linear equations
Mathematics
2 answers:
REY [17]3 years ago
6 0
Y is 155/41 or 3 32/41
JulsSmile [24]3 years ago
3 0
Step 1:
4y + x = 15
−9x + 5y = 20

Step 2: correct
4y + x = 15
x = 15 − 4y

Step 3: wrong
4y + x = 15
4y + (15 − 4y) = 15 wrong step
4y + 15 − 4y = 15
15 = 15
***once you have solved for a variable in one equation, you substitute it in the other equation

Corrected Step 3:
−9x + 5y = 20
-9(15 - 4y) + 5y= 20
(-9*15) + (-9*-4y) + 5y= 20
-135 + 36y + 5y= 20
-135 + 41y= 20
add 135 to both sides
41y= 155
divide both sides by 41
y= 155/41 or 3 32/41 or 3.78


ANSWER: The x value in step 2 should have been substituted in the opposite equation in step 3. The y solution would then be 155/41 or 3 32/41 or 3.78

Hope this helps! :) Would love to be marked brainliest.
You might be interested in
2.) South High School has 820 students. There are 40 more boys than girls. How many girls are
Natalija [7]
370 Girl and 450 Boys
7 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
I’LL MARK YOU AS BRAINLIEST!!!! Plz no links
Stella [2.4K]
A=((40+64)/2)*18= 936 units^2
8 0
3 years ago
Read 2 more answers
What is adjacents definition
marishachu [46]

Answer:

next to or adjoining something else.

or

GEOMETRY

(of angles) having a common vertex and a common side.

5 0
3 years ago
Read 2 more answers
Your classmates Sarah, Gene and Paul are proposing plans for a class fundraiser. Each presents his or her proposal for the amoun
elena-14-01-66 [18.8K]

Answer:

hi dara

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Determine if the statements below are true or false. (a) The area vector A of a flat, oriented surface is parallel to the surfac
    6·1 answer
  • Suppose you find one cent on the first day of September and two cents on the second day, four cents on the third day, and so on.
    13·2 answers
  • What’s the Distance between L(-7,0), y(5,9)?
    9·1 answer
  • Graph the inequality 4x+5y&gt;20
    11·1 answer
  • Please answer CORRECTLY !!!!!!!!! Will mark BRIANLIEST !!!!!!!!!!
    13·2 answers
  • Lcm of two numbers is 1320 their HDR is 12 if one of the numbers is 132 find the other
    13·1 answer
  • 8. (01.05 MC)
    9·2 answers
  • Describe the relationship between the base and the exponent in 43.
    10·1 answer
  • Thomas bought several paintbrushes for $4 each. He paid with a $20 bill. The expression 20 – 4n is used to determine how much ch
    5·1 answer
  • 1.3 is 10% of what number
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!