Considering that the data has no outliers, the mean of 3.2 inches should be used to describe the center of the data represented in this line plot.
<h3>What measure should be used to describe the center of a data-set?</h3>
It depends if the data-set has outliers or not.
- If it does not have outliers, the mean should be used.
- If it has, the median should be used.
The dot plot gives the number of times each measure appears. Since there is no outliers, that is, all values are close, the mean should be used. It is given by:
M = (2 x 1 + 3 x 2 + 2 x 3 + 1 x 5 + 1 x 6 + 1 x 7)/(2 + 3 + 2 + 1 + 1 + 1) = 3.2 inches.
The mean of 3.2 inches should be used to describe the center of the data represented in this line plot.
More can be learned about the mean of a data-set at brainly.com/question/24628525
Answer
Find out the what is the value of x when y = 8 .
To prove
As given
The variables y and x have a proportional relationship.

y = kx
Where k is the constant of proportionality.
As y = 5 when x = 4
Put in the above
5 = 4k

Now find out the value of x , when y = 8


x= 6.5
Therefore when y = 8 than x = 6.4
30, 6
150, 30
180 ................
Answer:
x = 3
y = 5
Step-by-step explanation:
Using theorem of similar triangles, we have,
(6 + x)/6 = (7 + 3.5)/7
(6 + x)/6 = 10.5/7
Cross multiply
7(6 + x) = 10.5(6)
42 + 7x = 63
7x = 63 - 42
7x = 21
x = 21/7
x = 3
Thus:
7.5/y = (7 + 3.5)/7
7.5/y = 10.5/7
Cross multiply
7.5*7 = 10.5*y
52.5 = 10.5*y
Divide both sides by 10.5
52.5/10.5 = y
y = 5
M= -3
b= 19
y= -3x +19
please crown me brainliest