The weight average of the coordinates is -4
<h3>How to determine the
weight average?</h3>
The complete question is given as:
The coordinate -6 has a weight of 3 and the coordinate 2 has a weight of 1. And we need to calculate the weight average
The given parameters are:
- Coordinate -6 has a weight of 3
- Coordinate 2 has a weight of 1.
The weight average is then calculated as:
Weight average = Sum of (Weigh * Coordinate)/Sum of Weights
So, we have:
Weight average = (-6 * 3 + 2 * 1)/(3 +1)
Evaluate the products
Weight average = (-18 + 2)/(3 +1)
Evaluate the sum
Weight average = -16/4
Evaluate the quotient
Weight average = -4
Hence, the weight average of the coordinates is -4
Read more about average at
brainly.com/question/20118982
#SPJ1
<u>Complete question</u>
The coordinate -6 has a weight of 3 and the coordinate 2 has a weight of 1. Calculate the weight average
The answer is 1,000 if you think about 30*1,000=30,000
Answer:
6.1
Step-by-step explanation:
Draw a picture of an equilateral triangle. Cut the triangle in half, so that you get two 30-60-90 triangles. The area of these smaller triangles is 8 square inches.
The short leg of these triangles (the base) is half the side length: ½ s.
According to properties of 30-60-90 triangles, the long leg (the height) is √3 times the short leg: ½ s√3.
Area of a triangle is half the base times the height:
A = ½bh
8 = ½ (½ s) (½ s√3)
8 = ⅛ s²√3
64 = s²√3
s² = 64/√3
s = √(64/√3)
s ≈ 6.1
Divide 224 by 8 and you will get 28.