First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx
Answer:
The probability that the bottle contains fewer than 12.38 ounces of beer
P(x < 12.38) = 0.00621
Step-by-step explanation:
This is a normal distribution problem with
Mean = μ = 12.48 ounces
Standard deviation = σ = 0.04 ounces
The probability that the bottle contains fewer than 12.38 ounces of beer
P(x < 12.38)
To solve this, we need to first normalize/standardize 12.38
The standardized score for any value is the value minus the mean then divided by the standard deviation.
z = (x - μ)/σ = (12.38 - 12.48)/0.04 = -2.50
To determine the probability that the bottle contains fewer than 12.38 ounces of beer
P(x < 12.38) = P(z < -2.50)
We'll use data from the normal probability table for these probabilities
P(x < 12.38) = P(z < -2.50) = 0.00621
Hope this Helps!!!
Answer: -3y +4
Step-by-step explanation:
Answer: x=4
Step-by-step explanation:
14=4x-2
4x=16
x=4