1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nydimaria [60]
3 years ago
9

Which statement is true about the graphs of the two lines y = –6 and x = 1/6 ?

Mathematics
1 answer:
sineoko [7]3 years ago
4 0
The answer is d the last one
You might be interested in
How are you in the bet nobody’s not going to help me on this question
Nataliya [291]

Answer:

See below.

Step-by-step explanation:

Party A

y = x^2 + 1

For each value of x in the table, substitute x in the equation with that value and evaluate y.

x = -2: y = (-2)^2 + 1 = 4 + 1 = 5

x = -1: y = (-1)^2 + 1 = 1 + 1 = 2

Do the same for x = 0, x = 1, x = 2

x     y

-2   5

-1    2

0    1

1     2

2    5

Part B

Look at points (-2, 5) and (-1, 2). The change in x from (-2, 5) to (-1, 2) is 1. The change in y is -3.

Now let's look at two other points which have a change in x of 1. Look at points (0, 1) and (1, 2). The change in x from (0, 1) to (1, 2) is 1. The change in y is 1.

You can see that for the first two points, a change of 1 in x produces a change of -3 in y, but for the second two points, the same change of 1 in x produce a change of 1 in y. Since the same change of x does not always produce the same change in y, the function is nonlinear.

Answer: A

4 0
3 years ago
Ad is tangent to circle o at d. find ab. round to the nearest tenth if necessary
Naddik [55]
Check the picture below.

\bf 0=AB^2+6AB-121\implies \stackrel{\textit{using the quadratic formula}}{AB=\cfrac{-6 \pm \sqrt{6^2-4(1)(-121)}}{2(1)}}
\\\\\\
AB=\cfrac{-6 \pm \sqrt{520}}{2}\implies AB=\cfrac{-6 \pm \sqrt{4\cdot 130}}{2}
\\\\\\
AB=\cfrac{-6 \pm \sqrt{2^2\cdot 130}}{2}\implies AB=\cfrac{-6 \pm 2\sqrt{130}}{2}
\\\\\\
AB=-3\pm\sqrt{130}\implies AB=
\begin{cases}
\boxed{-3+\sqrt{130}}\\\\
-3-\sqrt{130}
\end{cases}

since the distance AB cannot be a negative value, thus is not -3-√(130).

3 0
3 years ago
Read 2 more answers
109)
Lubov Fominskaja [6]
I strongly believe the answer is c
Hope this helps in some way:)
7 0
3 years ago
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
Meg is 6 years older than Victor. Meg's age is 2 years less than five times Victor's age. The equations below model the relation
Verdich [7]

Since no possible correct method is posted, I will suggest a couple.

Method 1: guess and check

Works well for simple problems involving integers like this one.

Victor's age must be zero or greater than one, say one.

Guess v=1, find m=v+6=7, check m=5v-2=5-2=3 no good.

we need to make v bigger

Guess v=2, find m=v+6=2+6=8, check m=5v-2=5*2-2=8 ✔

So v=2, m=8.

Method 2:

Solve the system of two equations.

since the left-hand sides is m in both equations, and since m=m, we just have to equate the right-hand sides to solve for v.

5v-2=v+6

Solve for v

5v-v = 6+2

4v=8

v=2,

so again, v=2, m=v+6=2+6=8.

6 0
4 years ago
Other questions:
  • The decimal form 1.46 becomes _ expressed as a percent 14.6 .0146 146%1.46%
    10·1 answer
  • Who knows how to do this?? If so help
    6·1 answer
  • ANSWER....................
    7·1 answer
  • 9 apples and 9 bananas cost £2.43 altogether. The total cost of 2 apples and 3 bananas is £0.69. Calculate the cost of an apple
    13·2 answers
  • Z/oom meeting now here is the stuff<br> ID: 593 447 7104<br> PW: isEnb5
    15·1 answer
  • Please help me on this thanks! will giv brain liest if right.
    14·1 answer
  • Charlotte picks up a few necessities at her local neighborhood market. Use the receipt to determine the total amount Charlotte w
    7·2 answers
  • Help please asapppppppppppppppppppp
    15·2 answers
  • I need help with this question. Please &amp; thank you!
    9·2 answers
  • Which terms could have a greatest common factor of 5m2n2? Select two options.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!