Answer:
3
Step-by-step explanation:
This means subtract something from the number <span>10</span>
Answer:
(x + 6)(x + 13)
Step-by-step explanation:
Given
x² + 19x + 78
Consider the factors of the constant term (+ 78) whuch sum to give the coefficient of the x- term (+ 19)
The factors are + 6 and + 13 , since
6 ×13 = + 78 and 6 + 13 = + 19 , then
x² + 19x + 78 = (x + 6)(x + 13) ← in factored form
Answer:
f(n)=f(n-1)+f(n-2)
f(1)=1x
f(2)=1x
Step-by-step explanation:
This is the fibonacci sequence with each term times x.
Notice, you are adding the previous two terms to get the third term per consecutive triples of the sequence.
That is:
1x+1x=2x
1x+2x=3x
2x+3x=5x
3x+5x=8x
So since we need the two terms before the third per each consecutive triple in the sequence, our recursive definition must include two terms of the sequence. People normally go with the first two.
f(1)=1x since first term of f is 1x
f(2)=1x since second term of f is 1x
Yes, I'm naming the sequence f.
So I said a third term in a consecutive triple of the sequence is equal to the sum of it's two prior terms. Example, f(3)=f(2)+f(1) and f(4)=f(3)+f(2) and so on...
Note, the term before the nth term is the (n-1)th term and the term before the (n-1)th term is the (n-2)th term. Just like before the 15th term you have the (15-1)th term and before that one you have the (15-2)th term. That example simplified means before the 15th term you have the 14th and then the 13th.
So in general f(n)=f(n-1)+f(n-2).
So the full recursive definition is:
f(n)=f(n-1)+f(n-2)
f(1)=1x
f(2)=1x
Answer: Jennifer didn't randomly assign participants to the control and experimental group.
Step-by-step explanation: In the scenario discussed above, Jennifer failed to perform a random assignment of the participants who took part in the survey, that is the experimental group, those who receive the treatment and the control group, those who don't. Random assignment is required in other to address the issue of bias in our experiment. She was supposed to perform a random assignment of the participants to the two groups instead of asking them to make a choice.